7th ESA Round-Table on MNT for Space Applications

Finding the Place for MEMS in Space

Tor-Arne Grönland CEO NanoSpace Uppsala Sweden

www.nanospace.se

Outline

MEMS/MNT for Space –where does it fit? >> Development strategy

Micropropulsion – where MNT makes a difference

- » Where we are today
- » Directions for the future
- Spin-off products

Concluding remarks > MEMS for space and the innovation process

The right place for MNT in Space

Unique functionality or performance
Low mass, volume and power (miniaturisation)
Secondary effects:

Increased redundancy without mass penalty
Quality control from batch manufacturing
Modularity: Multiple components/functions in single housing

Development philosophy

- Start simple and aim for the "end to end" tests
 Increase functionality and performance
 iteratively
- "Spin out" components if possible
- Accept a certain level of risks and set backs
 –its part of the development process

Outline

MNT for Space –where does it fit? » Development strategy

Micropropulsion – where MNT makes a difference

- » Where we are today
- » Directions for the future
- Spin off products

Concluding remarks > MNT for space and the innovation process

From proposal to launch in 5 years

Swedish Space Corporation Group

MEMS onboard PRISMA

Micropropulsion system

MEMS Thruster module

MEMS-based pressure sensor (delivered by Presens, (N))

MEMS Isolation valve & filter MEMS Pressure relief valve

September 2010

Microthrusters make a difference

September 2010

7th ESA Round-Table on MNT for Space Applications

NanoSpace

Where are we today? ... in space!

September 2010

Roadmap: MEMS-based Micropropulsion

Roadmap – In plain words

Development of high performance MEMS propulsion:

- Cold gas -> hot gas -> combustion ->
- bi-propellants in order to increase the specific impulse
- In parallel: Various types of electric propulsion

Miniaturization of propellant storage and feed system:

 Valves, pressure sensors, pressure regulator, filters can be made small and highly integrated using MEMS technology

Integration of sensors & closed loop control:

• Sensors and electronics can be small and integrated in the individual components

Spinn-off products:

• Valves, sensors, filters, regulators, etc..

Next generation micropropulsion thrusters

Current technology:

Thruster commands is based upon calibration tests on ground

The challenge: Missions requiring "drag free flight"

Solution:

Measure delivered thrust in real time and implement this in a control loop!

Requires integrated sensors

Early testing of 1 mN closed loop thrust control engine

The integrated MEMS sensor controls the valve input current to achieve the targeted massflow (and thus thrust)

September 2010

Outline

MNT for Space –where does it fit? » Development strategy

Micropropulsion – where MNT makes a difference

- » Where we are today
- » Directions for the future

• Spin off products

Concluding remarks > MNT for space and the innovation process

MEMS devices finding their place

MEMS isolation valve

- An isolation valve near the propellant tank to ensure "No leak" before the system is operated (similar to a pyrovalve)
- A particle filter included
- Redundant (2 inlets, 9 outlets)

High capacity MEMS Filters

Etched disk technology:

- High flow rate/low pressure drop
- Scalable design
- High capacity of particles
- Can be made compatible to most

fluids

NanoSpace

September 2010

A novel Scintillator to improve quality of X-ray images

-Space know-how enables manufacturing of novel MEMS chip

Current state of the art digital X-ray

- + No chemicals involved
- + Fast image processing and distribution
- + Lower x-ray dose
- Lower resolution and contrast

Solution: The new MEMS based scintillator technology

Product development done by Scint-X (www.scint-x.com)

Results - Comparison with "state of the art" technology

State of the art scintillator

Scint-X scintillator (20um pitch)

September 2010

Outline

MNT for Space –where does it fit? » Development strategy

Micropropulsion – where MNT makes a difference

- » Where we are today
- » Directions for the future
- Spin off products

Concluding remarks > MNT for space and the innovation process

MEMS for space and the innovation process

- Is the space Community less innovative?
- Short comings in the R&D process
 - Attention and funding levels
 - IPR strategy
- Inherent obstacles in space
 - Market volumes
 - Project cycles
 - The "flight qualified" catch 22
 - Mind-set about risks and potential failures
- > Boost innovations by more funding, frequent flight opportunities and accept a certain level of risk!

