

"MEMS Qualification: Towards an Approved European Methodology Abstract"

7th ESA Round-Table on MNT for Space Applications/6th CANEUS Workshops International Week on Micro and Nano Technologies for Space 2010 September ,13th -17th, ESTEC

MEMS Qualification: A standard approach

MEMS	
Procurement	

- What's the manufacturer qualification approach to "ready for release"? (Package/Sensor related, Reliability,...)
- Which evaluation conditions were applied by the manufacturer?
- Device details: materials, manufacturing processes,

- What the information available on the device type?
- What evaluation methods was used? What conditions were applied?
- Are there any reliability data available that can be used?

- Select appropriate standards according to the different requirements;
 Define testing conditions for the methods selected in the evaluation flow;
- MEMS Failure Analysis
- Characterize failures and detect root cause.
- Select the appropriate analysis techniques for the failures.

aerospace technology

MEMS Procurement - Flow

Procurement Plan

ltem	Key Information
Payment	Overall Cost
	Advance Payment
Timelines	Order date
	Delivery date
Supplier	Main Suppliers
	Additional Suppliers (if any)
Hardware	Number of devices
	Manufacturing completion phase

Procurement Criteria:

•Production quality system and assurance level;

- •Product specification;
- •Product workmanship assessments:
 - Destructive Physical Analysis results;
 - Failure history;
 - Reliability trends;
 - Qualification and screening test results;

•Product availability;

•Manufacturer audit and survey results;

•Manufacturer delivery history.

MEMS Devices Classification – Challenges

- Propose a stable but open classification system;
- Integrated standard system with focus in Evaluation and Assessment;
- Set-up of a coherent structure;

Mammals Classification		MEMS Classification
Majority already known	Number of items	Likely to increase
Relevant throughout	Classification Criteria	Some criteria are more suitable to some devices that others
Well-defined system and straight forward definitions	Definitions	Unclear definitions
All mammals share some common features	Similarities	Only the scale is common to every device
Natural evolution from older species	Heritage	Devices created separately with different degrees of maturity. Recent technology.
Classification order based on a "natural" order	Order	Classification greatly depends on the approach and target field.

MEMS Devices Classification – Challenges

Order	Family Name	Common Name/ Examples	No. of Species	Distribution of Order	General Characteristics of Order
Monotromos	Ornithorhynchidae	Platypus	1	Australia	Law ages from which youngs are batched
Monotrenies	Tachyglossidae	Echidna	2	Australia	Lay eggs from which youngs are natched.
	Didelphidae	Opossums	65		
	Thylacinidae	Thylacinidae Tasmanian wolf 1			
	Dasyuridae	Native cats, marsupial mice	48		
	Myrmecobiidae	Numbat	1		
	Notoryctidae	Marsupial moles	2		
	Peramelidae	Bandicoots	22		
	Thylacomyidae	Burrowing bandicoots	20	Australia S and C	Premature birth of young and continued
Marsupialia	Caenolestidae	rat opossums	7	America	development outside the womb
	Phalangeridae	Phalangers, cuscuses	15	, anonou	
	Burramyidae	pigmy possums	6		
	Petauridae	Gliding phalangers	25		
	Macropodidae	Kangaroos, wallabies	bies 47		
	Phascolarctidae	Koala	1		
	Vombatidae	Wombat	4		
	Tarsipedidae	Honey possum	1		
	Lemuridae	Lemurs	14		
	Cheirogaleidae	Dwarf lemurs, mouse lemurs	4		
	Indriidae	Indrii, sifaka, avali	4		
	Daubentoniidae	Aye aye (lemur)	1		
	Lepilmuridae	Sportive lemurs	2		
	Galagidae	Galagos	7		
	Lorisidae	Lorises, pottos, bushbabies	12	Asia, Africa, S	Omnivorous, multi-purpose dentition, large brain,
Primates	Tupaiidae	Tree shrews	17	America (humans	body position upright, five-digit hands and feet,
	Tarsiidae	Tarsiers	3	distributed worldwide)	stereoscopic vision.
	Callitrichidae	Tamarins, marmosets	15		
	Cebidae	New World monkeys	30	1	
	Cercopithecidae	Old World monkeys	72		
	Hylobatidae	Gibbons, siamangs	7		
	Pongidae	Great apes: gorilla, chimpanzee	10]	
	Hominids	Humans	1		

Section of Mammals Classification Matrix(1)

MEMS Classification Matrix – MEMS Classification Examples

Class	Class 1	Class 2	Class 3	Class 4
Definition	No moving parts	Moving parts with no impacting surfaces and rubbing surfaces	Moving parts with impacting surfaces	Moving parts with impacting and rubbing surfaces
Example	Accelerometers Pressure sensors Ink jet heads Strain gauges	Gyroscopes Comb drives Resonators RF filters	Relays Valves Pumps	Optical switches Shutters Discriminators
Failure mechanism	Particle/Particulate contamination	Particle/Particulate contamination Shock induced stiction Mechanical fatigue	Particle/Particulate contamination Shock induced stiction Mechanical fatigue Impact damage Stiction	Particle/Particulate contamination Shock induced stiction Mechanical fatigue Impact damage Stiction

Example 2

Example 1

		MEMS-P	ackaging		
Single Chip Pac	kaging (SCP)	Waferba	sed SCP	Wafer Leve	l Packaging

These examples address the needs of specific MEMS areas but fail to provide an open approach to all type of MEMS!

WWW.LUSOSP.

		MEMS Classification					
n	Groups	RF extrinsic	RF intrinsic	RF reactive			
ACE.COM	Details	The MEMS structure is located outside the RF circuit but actuates or controls other devices in the circuit; RF MEMS does not necessarily imply that the system is operating at RF frequencies.	The MEMS structure is located inside the RF circuit and it has the dual but decoupled roles of actuation and RF circuit function.	The MEMS structure is located inside the RF circuit where it has a RF function that is coupled to the actuation.			

6

aerospace technology

MEMS Classification Matrix – Development

MEMS Classification Matrix - Final Version

Moving	Functional	Working Principle	Suspending Element	Impact Motion	Group
			Vee	Yes	1
		Flootroototio	res	No	2
		Electrostatic	No	Yes	3
	Ontion		NO	No	4
	Optical		Vee	Yes	5
		Others	res	No	6
			No	Yes	7
Vee				No	8
res			Vee	Yes	9
			res	No	10
		Electrostatic	Ne	Yes	11
	New Ontion		NO	No	12
	Non-Optical		Vee	Yes	13
		Othoro	res	No	14
		Others	Ne	Yes	15
			INO	No	16

Moving	Functional	Working Principle	Suspending Element	Impact Motion	Group
		Electrostatic	Yes	-	17
	Ontion	Electrostatic	No	-	18
No	Optical	Others	Yes	-	19
		Others	No	-	20
	Non-Optical		Yes	-	21
		Electrostatic	No	-	22
			Yes	-	23
		Utners	No	-	24

MEMS Classification Matrix - Highlights

>24 groups; 6 levels of classification (3 criteria based on the device functionality + 3 on physical features);

12 classification criteria considered

(Fabrication Method ,Working Principle (Sensing), Working Principle (Actuation) , Active Element Movement stop/ Material one side/ Material other side/Coating, Encapsulation/Internal Environment Limit, Visual Access, Moving, Impact Motion, Friction Motion, Suspended Element, Suspending Element)

Proposed criteria and order minimizes the number of groups and maximizes the number of covered failure modes;

> Open system to new devices and failure mode entries.

Limited knowledge of failure modes and information on MEMS;

- Likely failure modes can change along with technological development;
- MEMS without clear micro-mechanical features don't have a straight forward classification;

No natural order. Compromise between grouping factor and devices with similar failure mode, i.e. devices failing into the same group share some failure modes but have others that can distinguish them;

aerospace technology

MEMS Evaluation Flow – Main Steps

WWW.LUSOSPACE.COM

Pre Stress Functional Characterization

During this phase the device undergoes a functional test which determines the acceptance or rejection of the device based on rejection criteria. Additionally, it may also provide an insight on the nature and severity of the fail.

Inputs: Device, test equipment;/ Outputs: Pass/Fail, Severity level;

Device Stress

Once the fail has been determined it may be necessary to access the device for further investigation. Thus, for those devices fully encapsulated and without any access path to the inner areas, opening is necessary. Those with are open may not require access, depending on the failure location.

Inputs: Device, Failure area / Ou/tputs: Access to failure area;

Post Stress Functional Characterization

The functional characterization of the fail device is a necessary step in order to get the likely failure location and behaviour of the device. Every relevant parameter should be measured providing insight onto the likely root cause and failure mode.

Inputs: Access to failure area/ Outputs: Location of the failure area, Root cause, Failure type;

Failure Analysis

The physical analysis phase comprises the technical methods which provide details and evidence of the details put forward during the previous phase. Inspection methods shall be used to guide the technician to the failure area.

Inputs: Address of the failure area, Root cause, Failure type/ **Outputs**: Evidence of the failure type, Failure mechanism confirmation;

MEMS Evaluation Flow – Combined Result

MEMS Evaluation Flow – Outputs

Evaluation Flows

. . .

...

(Evaluation Flow1 EvalMethod_1 EvalMethod_2)
(Evaluation Flow2 EvalMethod_1 EvalMethod_3)
(Evaluation Flow3 EvalMethod_1 EvalMethod_4)
(Evaluation Flow4 EvalMethod_1 EvalMethod_4)

Standards&Conditions

(Type1| Standard_1|...|)) (Type2| Standard_2|...|)) (Type3| Standard_3|...|))

The final flow and applied standards are a derivation of a broader evaluation flow where parameters like complexity and usefullness are assessed.

11. MEMS Evaluation Flow - Test/Test Conditions

Technology Requirements

Address the stresses type required to segregate fails closely related with the device operation and design features.
 Provide evidence about the device performance throughout its lifetime by accelerating environmental and operational parameters such as temperature, pressure or voltage.

Sector Requirements

> Environment needs where the device is expected to operate. Therefore, the space conditions dictate that issues such as hermeticity, thermal connectivity should be evaluated with appropriate tests and limits, e.g. out-gassing and depressurization.

Project Requirements

> Project special needs. Each mission has its own targeted application and although the operational environment is virtually common to every mission, specific project needs may require specific limits and tests, e.g. the shielding against radiation or the external temperature protection are simples examples may that led to additional tests with mission driven limits.

MEMS Classification Matrix and Evaluation Procedures

Moving	Functional	Working Principle	Suspending Element	Impact Motion	Group	Eval. Flow
			Voc	Yes	1	1
X		Flootroototio	res	No	2	2
		Electrostatic	Ne	Yes	3	3
	Ontion		NO	No	4	4
	Optical		Vee	Yes	5	1
		Others	res	No	6	2
			No	Yes	7	3
				No	8	4
Yes		Electrostatic	Yes	Yes	9	1
				No	10	2
			N -	Yes	11	3
	New Outlest		NO	No	12	4
	Non-Optical		Mar	Yes	13	1
		Others	res	No	14	2
		Others	Na	Yes	15	3
			INO	No	16	4

Moving	Functional	Working Principle	Suspending Element	Impact Motion	Group	Eval. Flow
		Electrostatic	Yes	-	17	4
	Ontinal		No	-	18	4
No	Optical	Others	Yes	-	19	4
			No	-	20	4
	Non-Optical	Electrostatic	Yes	-	21	4
			No	-	22	4
		Others	Yes	-	23	4
			No	-	24	4

aerospace technology

MEMS Classification and Evaluation Procedures Example (Colibrys MS9010 accelerometer)

Classification

Evaluation Flow 3

aerospace technology

13. MEMS Failure Analysis Flow – *Methodology*

Analysis Flow

aerospace technology

MEMS Failure Analysis Flow - Correlating Failure and Analysis Techniques (Section)

Category	Fauilure Type	Comment	Comment on detection	Character	Function	Visual	Visible noncontact	SEM	X-Ray	Other noncontact visual	SAM	Scantip	Electrical	Pin-pin + pin-ground isolation	I-U -curve	Dynamic capacitance (admitance)	Physical (Material analysis: special	Chemical (Material analysis; special	PERA	DNIG	Any excitation AC response	AC excitation other response	Any excitation optical response	
Mechanical Degradation	eneral			destructive	\vdash		-	\vdash			\vdash	\vdash											-	
	Delamination	Two layers come apart due to internal (production) or induced stress (CTE, actuation) different scenarios: solid substrate-thin film reacts only to thermal and chemical stresses thin suspended multilayers also to actuation deformation.	best detected in visual inspection, preferably in a technique that is sensitive to small gaps (SAM), or has high resolution might show in function and PERA	Non destructive	5	4	4	2	4	5	4	1	3	2	3	3	1	1	4	2	4	4	3	3
				destructive	2	6	5	6	4	6	3	3	1	1	2	2	1	1	3	1	3	3	4	High;1- Low
	Non-Elastic Deformation	Will occur on production defects after normal stress or due to over stress (thin members only)	Should show up in function and PERA, and of course most visible inspection techniques based on size.	Non destructive	5	5	2	2	2	4	1	1	3	2	3	3	1	1	5	1	4	4	3	9

MEMS Failure Analysis Flow – *Highlights*

• 23 failure types listed and analysed

(Function, Delamination, Elastic Deformation, Non Elastic Deformation, Crack, Fracture, Fatigue, Creep, Hermeticity, Rupture, Particles, Freeze, Stiction, Latch-up, Wear, Contact Damage, Conductor/ Isolator Void, Charging, Inter-Material Diffusion, Electro-Migration, Segregation, Micro Recrystallization, Macro Re-crystallization, Corrosion)

• 19 groups of analysis techniques considered for the analysis flow, >45 techniques groups evaluated (Function, Visual, Visible noncontact, SEM, X-Ray, Other noncontact visual, SAM, can tip, Electrical, Pin-pin +pin-ground isolation, I-U –curve, Dynamic capacitance (admittance), Physical (Material analysis; special test), Chemical (Material analysis; special test), PERA, PIND, Any excitation AC response, AC excitation other response, Any excitation optical response)

33 evaluation methods analysed

(Function, Stabilization Bake, Resistance to Soldering Heat, Solderability, Preconditioning, Burn-In, Temperature Cycling, Thermal Shock, High Temperature Operation Life, Low Temperature Operation Life, Temperature Humidity Bias, Highly Accelerated Stress Test, Pressure Cooker Test, Thermal Vacuum, Rapid Depressurization, Pin to Pin Isolation Test, Out-gassing, Fine and Gross Leak Test (Seal), Internal Water Vapour Content, Mechanical Shock, Mechanical Vibration, Acoustic Vibration, Constant Acceleration, Total Ionizing Dose, Neutron, Alpha, Protons Test, Flash X Test, Heavy Ions, Electrostatic Sensitivity Discharge, Dependent Dielectric Breakdown, Non Destructive Magnetic Test, Voltage Endurance Test, Residual Gas Analysis)

aerospace technology

MEMS Qualification: A standard approach

How to improve?

- Use the a common Classification, Evaluation, Analysis platform;
- Be pro-active, criticize, submit comments and suggestions;
- Propose updates and changes, if necessary;
- Develop test methods in the MEMS area;
- Share test results, applied test limits, sample sizes...;

aerospace technology

Example: New test methodology (PERA – "Periodic Excitation Response Analysis")

Accelerometer PERA results:

Results:

- Complex frequency response, heavily influenced by mount properties -> only coarse infromation about device health.

- No resnoance at 3.7kHz, probably supressed by electronics -> More suplier input and www.lusos more analysis/test necessary

aerospace technology

Example: Test Set-up details

Frequency Analysis Set-up

Angle Analysis Set-up

aerospace technology

Example:Test Set-up details

Example: Test Plan and Test Limits

Test	Standard Name	Parameters/Conditions							
Total Ionizing Dose	ESCC 22900	Co-60,: 82rad/min, TID: 30kRad (Si)							
Preconditioning*	JESD22-A113; JEDEC J-STD-020	24h Bake, 125°C, 3x IR reflow							
Temperature Cycling	MIL-STD-883E Method 1010	500cycles -55 <t(°c) <+125<="" th=""></t(°c)>							
Thermal Shock	MIL-STD-883E Method 1011.9	-55 <t(°c) 100cycles<="" <+125="" th=""></t(°c)>							
Thermal Vacuum	ECSS-E-10-03A Parag 5.1.15 ESA PSS-01-702	10cycl,-55°C <t(°c) ,="" 10^-8<p(bar)="" <+80°c="" <1<="" th=""></t(°c)>							
Depressurization		100KPa (1 Bar) to 5KPa (5x10-2 Bar) at a rate of 3.2 KPa/sec (3.2x10-2 bar/sec)							
Pin to Pin Isolation Test*	MIL-STD-883, Method 1003	Cond_A: 10 volts ±10%							
Out-gassing	ECSS-Q-ST-70-02C	125°C, 24h, 10^-3Pa							
Fine and Gross Leak Testing (Seal)*	Mil- Std-883E Method 1014.9	Cond_A:5x10^-8 atm.cm^3/sec							
Mechanical Shock	MIL-STD 883E Method 2002	5400g							
Mechanical Vibration	MIL-STD 883 Method 2007 Mil-Std-883 Method 2005	10g, FFR							
Internal Water Vapour Content	MIL-STD 883 Method 1018.2								
Electrostatic Sensitivity Discharge*	MIL-STD-883 Method 3015 (HBM)	HBM (~2000V)							
Time Dependent Dielectric Breakdow*	IEC 62374	-							
High Temp Operational Life	Mil Std 883, Method 1005	1000h, T=120°C							
Low Temp Operational Life	Mil Std 883, Method 1005	1000h,T=-50°C							
High Voltage Operational Life	-	1000h, V=5.5V							
Low Voltage Operational Life	-	1000h, V=2.5V							
High Pressure Operational Life	-	1000h, P=2atm							
Low Pressure Operational Life	-	1000h, P~10^-3atm							

aerospace technology

Conclusions

- The presented classification matrix is driven by the need to have a standard approach in the MEMS space sector;
- The proposed procedures form an open classification, evaluation and analysis system;
- As an pure theoretical methodology it requires experimental support to validate flows and parameters;
 - Information about testing parameters are vital to reach meaningful values on test levels/limits;
- The presented results should be discussed and criticized in the current MNT space strategy set out by ESA.

aerospace technology

...information collected from the ESA sponsored project " Procedures for MEMS Qualification"

Project Consortium:

Lusosapce (Rodrigues, Bruno) (Fettig, Rainer)

EADS Astrium (Oudea, Coumar)

Thales Alenia Space (Vendier, Olivier)

Alter Tecnologica (Gutierrez, Francisco)

BACK-UP

aerospace technology

Periodic Excitation Response Analysis

Common techniques coupling to (the mass) of electrons, molecules and lattices by means of electro(magnitic) forces.

IR-Spectroscopy
Admittance test (I(V,f) for network analysis
Admittance test (I(V,f) for analysis of composit materials

Common techniques coupling to mass of bulk materials:

•Ultrasound analysis techniques

aerospace technology

13. MEMS Failure Analysis: PERA

In MEMS there are several emerging techniques coupling to the mass of elastically suspended Members

•Tip excitaton at wafer level and laser readout (Laser Vibrometer) (mech in, opt out) •Generallized Admittance Test (electric in, electric out)

Because of the nature of the resonances various methods of excitation and readout are possible depending on access levels:

•Force input: Electrical, mechanical (tip, shaker, acoustic, gas pressure), magnetic, thermal.. •Response output: electrical, optical, mechanical,

aerospace technology

13. MEMS Failure Analysis: PERA

Advantages:

Nondestructive
 Several access options
 Potentially simple
 many results (Amplitudes, resonances, damping, stops...)

Dissadvantages:

- •Limited heritage
- •Complex results

aerospace technology

13. MEMS Failure Analysis: PERA

Accelerometers are perfect candidates for PERA:

•Built in frequency response readout •Simple mechanical structure

Accelerometer PERA test condition:

Mechanical excitation on shaker Read out of Signal through readout electronics