

Customer-Oriented Product Engineering of Micro and Nano Devices

Efficient Virtual Manufacturing for MNT

Gerold Schröpfer, Coventor

September 2010, 7th ESA Round-Table on MNT for Space Applications

CORONA project

Vision and aims

CORONA software tools

- Process IP and know-how management
- 3D MNT design
- Virtual Manufacturing
- Process design kits

- CORONA
- is the process of gradually turning the idea of a technical device into a physical realisation.
- includes both the design and the fabrication stages.

Specifying "what to do" and roughly "how to do it"

Specifying "how to do it" on a detailed level Making sure "to do it well"

- A large variety of business models
 - From large IDMs to specialised companies
- Distributed development and manufacturing
 - Different companies (or departments) at different locations
- SME focus
 - Frequently SMEs involved with small development budget

Customer orientation

Only the customer knows product and constraints

But...

There is currently no appropriate product engineering methodology and tools available to support these aspects.

- **Benefits from MNT Product Engineering**
 - What can be expected from MNT product engineering?

- Shorter time-to-market:
 - Reduced cycle time
 - Fewer learning cycles
- Access to knowledge-bases on design and fabrication
 - ICT based structure and tools
 - Improved transfer of knowledge from design to production
- Customer-lead multi-site product development

Value chain in MNT

MEMS Device Develop- ment	MEMS Design	Process (Tech- nology) Develop- ment	MEMS Wafer Manu- facturing	MEMS Assembly & Test	Marketing & Sales
Fabless Houses		MEMS Process Develop- ment Specialists		Assembly & Test Houses	Distribu- tors, Fabless Houses, Whole- salers, Trading Companies
	Design Houses, Design Centres (Wafer) Foundry Services, Semiconductor Contrac Manufacturer (SCM)				
<	egrated Semi	conductor/De	evice Manufa	cturer (ISM/II	DM)

Process Tools COR A framework for process design verification and tracking

XperDesk 2009.1 - [dortloff - Dirk. Ortloff]

Anterial search results

3D Schematic Editor for MEMS

MEMS Design in 3D

- Intuitive 3D environment for device creation
- Based on validated MEMS component library
- Parameterization of material, process and design

🋞 Coventor MEMS+ - C:/source/memsplus/trunk/src/MEMSplus/Modules/Innovator/unitTest/RFSwitch. 3dsch 👘 🖃 🔲 🔀															
i 🗅 🚰 - 🗔 👒	୭ ୯ 😕 /	<u>9</u>													
i 🚜 🎘 🚷 i 🕂	-K 🗞 🖪	🗙 alje		506	1 🗈 🗄	1	1 7 7	k 0.	Ge	Č					
Components			8	+ <u>P</u>	2	29 29	L ² ^y	- *	A	}? 🔘	Ø	R	Scale Z	✓ 10	*
 Components Beam.Anche Beam.Actua Beam.Sepan Beam.Tip 	or ation_Pad ration_Beam														
Mechanical Co E	lectrical Co	Comp.													
Variables			8												
Name	Value	Exposed	<u>_</u>												
Т	273.15	🔽 true													
AnchorLength	55	🔄 false	=												
AnchorWidth	20	🔄 false		_							\leq				
ActuationPadLength	100	🔽 true													
ActuationPadWidth	100	🔽 true		Ĩ.	م آ										
SeparationBeamLength	25	🔄 false		- K											
SeparationBeamWidth	100	🔄 false			₩ X										
TransLineLength	45	n false	~					MEN	NTOI 1S+	¢					

3-D view of RF switch in new 3D schematic Editor GUI (Graphical User Interface)

Layer Browser in a Property Window of a Straight Beam Component

Name			Exp	ression	Units	
😑 Aluminum						
😥 Visual Pr	operties					
😑 Materia	Type : Solid		~			
😑 Soli	ł					
	Wafer Orientati	on : Euler Angles	~			
	Density			2300	kg/m^3	~
	Elastic Constant	s : Isotropic	*			
	PreStress : In-p	lane Isotropic	~			
	Stress Gradient	in Z : In-plane Isotropi	~			
	Thermal Coeffici	ent of Expansion				
	Thermal Conduc	tivity		240	W/(m*K)	v
- Specific Heat				930	J/(kg*K)	~
	Electrical Condu	ctivity	.8*1	[^2-1e6*T+2e8	S/m	v
	Piezoelectric Co	efficients : undef	~			
	Relative Permitt	ivity : Isotropic	~			
۲	Piezoresistive C	pefficients				
	Relative Permea	bility				
	Coercivity				A/m	
Saturation Magnetization					Т	
E SI3N4						
THERM_OXI	DE					
SILICON						_
Variables						5
Name	Value	Exposed				
r		273.15 🖌 true				
		undef 🔲 false				
			1			

Integration with MEMS and EDA

Seamless Connection to IC Design

- CORONA
- The MEMS designer transfers the model to the IC-designer
- The IC designer does electronic system design

Design of 3D MEMS with IC CORONA Assemble design in 3-D Export MEMS model 3 Insert MEMS model in schematic 2 1 is the same of WHITE DISK DISK STR. A DESTA MAR ALABARA CALER AND AND AND A and the second Symbol Simulate 4 Parameterized MEMS Netlist **Cadence Circuit Simulator Component Library** P-Cell 6 Visualize simulations in 3D Place MEMS pCell in layout 5

How it works

GDSII Layout

Process Description

3D Modeling Engine

builds voxel models by applying a sequence of primitive operations

Voxels are 3D pixels

Customizable to any process technology

Simulation Mesh

X-FAB uses virtual fab runs for...

- Customer support, marketing of MEMS foundry technologies
- Checking new designs <u>prior</u> to actual fabrication
- Process development
- Failure analysis

Example: Design Check

Example: A design error that was caught before mask tape-out

Visual inspection of SEMulator3D model showed isolation trench structure would have been improperly exposed to subsequent DRIE

Top view of SEMulator3D model

Example: Failure Analysis

CORONA

During development of X-FAB's technology, undesired pockets formed

in mechanical layer during release etch

The release etch for the movable parts was etching through thin spots in the protective oxide layer

3-D Model

Virtual manufacturing via simulation

Designer

... use tools to build a bridge

Enable MEMS Eco-System

 Facilitate communication between the distributed partners of the MEMS eco-system

Validation via Business Cases

- Fab Less -> Theon -> Capacitive Accelerometer
- Combination XFAB / ITE -> Technology design / Post Processing Smart vibration detector

- University Cambridge -> post processing -> Life Science
- Integrated Manufacturer -> ELMOS -> Pressure Sensor System

www.corona-mnt.eu

gerold.schropfer@coventor.com

Phone: +33 169298485

Process Relations

