

# Miniaturisation Technology Development for Disruptive Spacecraft

J. Kohler, D. Binns, M. Politano and E. Kircher ESA/ESTEC

7th ESA Round-Table on MNT for Space Applications 13-16<sup>th</sup> September 2010

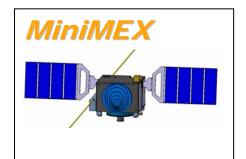
www.esa.int

European Space Agency

## Microsystem-based spacecraft



One current and a future technology development theme and two internal concurrent design study


NEOMEx theme in Basic Technology Research Programme (TRP) 2008-2010.

NanoSat CDF study

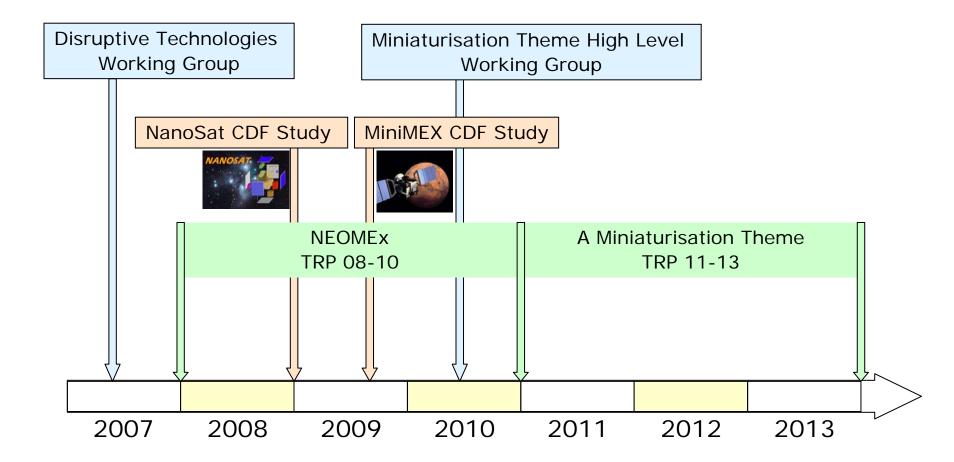
- MiniMEX CDF study
- Future Miniaturisation Theme (TRP 2011-2013)







.


.

.

.

## **Contents in context**





European Space Agency

## The NEOMEx Strawman



#### Roisase 551101-164

NEOMEx: Near Earth Object Micro plorer

To provide a focus application for a microsystem-based spacecraft concept

- Design driver for consolidated microsystems and miniaturisation developments
- Modular microsystem-based design

Explorer mission applications as first target.

- Possible mission enabler

- Mass saver

**Objective:** To perform close-up scientific investigations on several sites on a Near Earth Object.

**Constraints:** Extreme mass-limitation, 5 kg platform, 2-4 kg payload of 10-15 W

Challenge: use microsystems integrated in a system to gain performance with respect to mass.

ESA Don Quixote Mission Concept

#### European Space Agency



## NanoSat CDF study

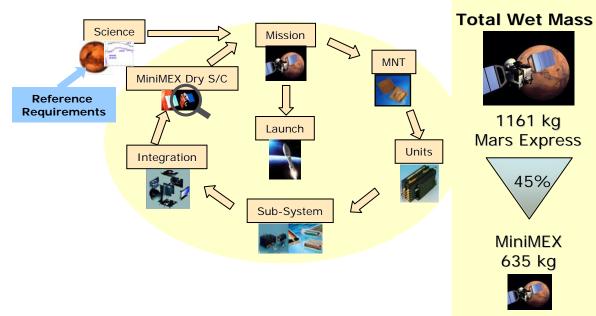

NANOSAT

- Nanospacecraft (20 kg wet mass, launch 2018): assess technologies and units/modules within 5 years of development
- Highly modular multipurpose platform.
- Application of disruptive miniaturisation to all subsystems.
- Low recurring cost, readily configurable platform to serve large range of potential missions and payloads.

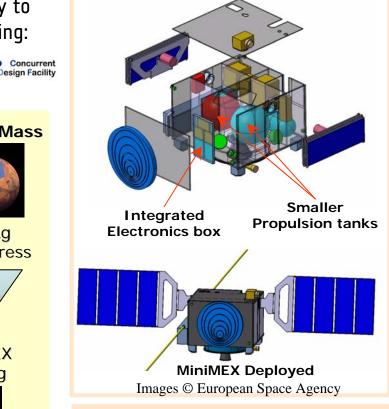
#### Example performance

- LEO SSO 60 km alt.
- 3-axis stabilised nadir-pointing
- 1 DoF control, 62.5 m/s  $\Delta v$
- Payload: 8 I, 6.5 kg, 5 W cont.
- Data rate: 2 Mbps
- Downlink: 4.5 Gb/day
- Mass: 11.3 kg platform 6.7 kg payload 2.0 ko propellant

| AOCS Performance | APE [arcmin]        | RPE [arcsec]/100s |  |  |  |  |  |  |  |  |
|------------------|---------------------|-------------------|--|--|--|--|--|--|--|--|
| Determination    | 0.4                 | 4                 |  |  |  |  |  |  |  |  |
| Pointing         | 1                   | 10                |  |  |  |  |  |  |  |  |
| Slewing          | 90 deg in < 100 sec |                   |  |  |  |  |  |  |  |  |







## **MiniMEX CDF study**



- Miniature Mars Express or *"MiniMEX"* is a technology study to investigate the system impact of new technologies, including:
  - Micro Nano Technology
  - Innovative Integration
  - Existing Concepts in the TRP/GSTP/Other



|                          | MEX   | 0: Mod | 1: Mini | 2: Int |  |  |  |
|--------------------------|-------|--------|---------|--------|--|--|--|
| Total Dry                | 617.4 | 452.8  | 304.7   | 285.4  |  |  |  |
| Reference Proportion (%) | 100   | 73     | 49      | 46     |  |  |  |



MNT systems considered including:

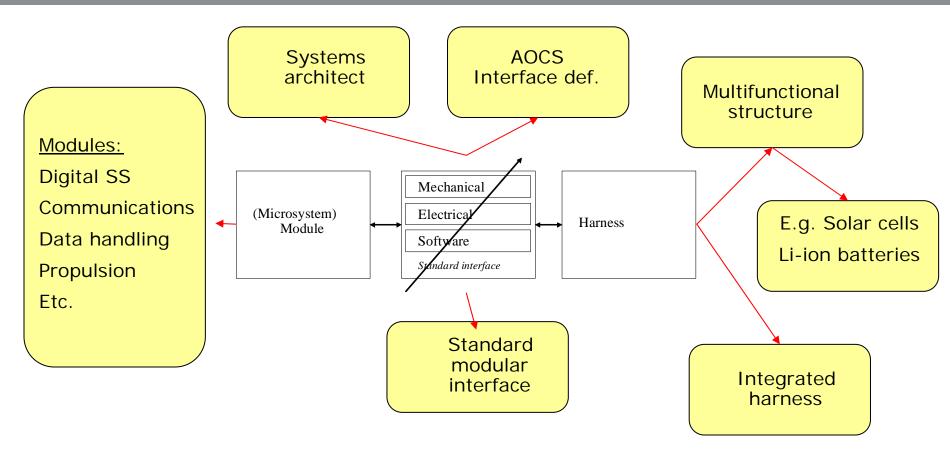
- AOCS Sensors-on-a-chip
- Integrated Data Handling
- RF MEMS switch
- MEMS IMU
- Nano D connector
- Passive reconfigurable thermal control

# Future Disruptive Miniaturisation Theme Proposed for TRP 2011-2013



## **Overall Objective**

 Define a coherent set of activities ensuring the development of key technologies to demonstrate advantages of miniaturisation: lighter spacecrafts aiming at lower recurrent costs, easier integration and simplified testing based upon a strawman concept.


#### Platform

- The theme was started in the previous 3-year plan around strawman NEOMEX, driven by technology push.
- The approach is complemented with a top-down approach, need to reduce by a factor 2 the mass of the 1000 kg (dry mass) class spacecraft

#### Targets activities for which TRL 5 can be achieved no later than 2017 and includes:

- Breadboards and demonstration of new disruptive concepts
- Space qualification of advanced miniaturisation enabling components, in particular for power applications
- Equipment options that have shown potential based on system studies:
  - Sensors-on-a-chip development
  - Integrated RF
  - Passive reconfigurable thermal control
  - Antennas: smaller, lighter, multi-functional for X-band applications (avionics)

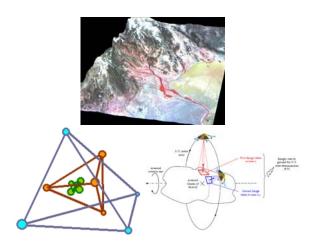
## **NEOMEx Activities in a System Context**

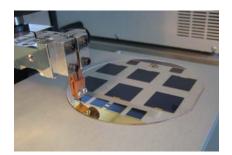


Plug-and-play capability

Low recurrent cost

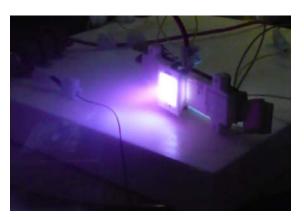
Standard interfaces


Reusability of modules


**S**2


•

## **NEOMEx Ongoing Activities I**









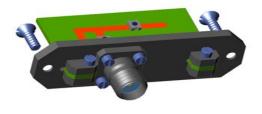

- AOCS definition and sizing
  - SEA

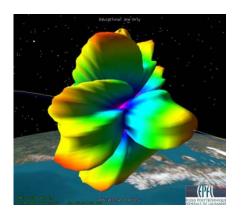


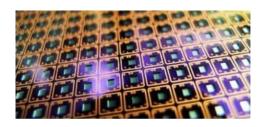
- Ultra-thin multijunction
  - GaAs solar cells
    - Fraunhofer

Institute

- Micropropulsion system (µPPT)
  - University of
    - Southampton,
    - ClydeSpace, et al


Digital sunsensor on a chip


- Selex Galileo


European Space Agency

## **NEOMEx Ongoing Activities II**









- Multifunctional antenna systems I
  - IDS

 Multifunctional antenna systems II

- EPFL

- Standard modular microsystems interface
  - AAC Microtec

## NanoSat Modules Development



|                                            | 2000 | 2000 | 2010 | 2011     | 2012 | 2012 | 2014 | 2015 | 2016 | 2017 | 2010 |                                                      | 2008 | 2009 | 2010 | 2011     | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 2 | 2018 |
|--------------------------------------------|------|------|------|----------|------|------|------|------|------|------|------|------------------------------------------------------|------|------|------|----------|------|------|------|------|------|--------|------|
| 1000                                       | 2008 | 2009 | 2010 | 2011     | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | Propulsion                                           | 1    | 1    | 1    |          | 1    |      |      |      |      |        |      |
| AOCS                                       |      |      |      |          |      |      |      |      |      |      |      | Propellant Tank Module (A)                           | 5    | 6    | 7    | 7        | 8    |      |      |      |      |        |      |
| Digital Sun Sensor                         | 3    |      | 6    | 8        |      | 9    |      |      |      |      |      | Cold Gas Generator Module (B)                        | 4    | 5    | 6    | 6        | 7    | 8    |      |      |      |        |      |
| Star Tracker                               |      | 2    |      | 3        |      | 6    |      | 7    | 9    |      |      | Solid Propellant Thruster Module (C)                 | 2    | 0    | 0    | 0        | 7    | -    | 0    | 6    | 7    | 8      |      |
| Gyro                                       |      | 5    | 6    |          | 8    |      | 9    |      |      |      |      |                                                      |      | 3    | 3    | 4        | 5    | 5    | 0    | •    | 1    | 8      |      |
| Earth Sensor                               | 1    |      | 3    |          | 7    |      |      |      |      |      |      | Single Thruster Monopropellant Module (D)            | 3    | 4    | 5    | 5        | 6    | 6    | /    | 8    |      |        |      |
| GNSS Receiver                              |      | 4    | 6    |          | 8    |      | 9    |      |      |      |      | Single Thruster Butane Module (E)                    | 3    | 4    | 5    | 5        | 6    | 6    | 7    | 8    |      |        |      |
| Magnetometer                               |      | 4    | 6    | 8        |      | 9    |      |      |      |      |      | Three Thruster Butane Module (F)                     | 3    | 4    | 5    | 5        | 6    | 6    | 7    | 8    |      |        |      |
| Magnetorquer                               |      | 4    | 6    |          | 8    |      | 9    |      |      |      |      | Four Thruster MEMS Nitrogen Module (G)               | 3    | 4    | 5    | 5        | 6    | 6    | 7    | 8    |      |        |      |
| Reaction Wheel                             |      | 3    | 4    | 6        |      | 8    |      | 9    |      |      |      |                                                      |      |      |      |          |      |      |      |      |      |        |      |
| Navigation camera                          |      | 2    |      | 3        |      | 6    |      | 7    | 9    |      |      | Structure                                            |      |      |      |          |      |      |      |      |      |        |      |
|                                            |      |      |      |          |      |      |      |      |      |      |      | Conventional Structure                               |      | 7    |      |          | 9    |      |      |      |      |        |      |
| Antennas/Comms                             |      |      |      |          |      |      |      |      |      |      |      | Innovative Structure                                 |      | 2    |      | 3        | 4    | 5    | 6    | 7    | 8    | 9      |      |
| Lightweight S-band antenna                 | 6    |      | 8    | 9        | 1    |      |      |      |      |      |      | Harness based on Nanotubes                           |      | 1    |      | 2        |      | 4    |      | 5    |      | 6      |      |
| Lightweight X-band antenna                 | 2    |      | 3    |          | 6    | 8    | 9    |      |      |      |      | Conventional Harness                                 |      | 7    |      | 9        |      |      |      |      |      |        |      |
| Multifunctional distributed antenna system | 1    |      | 2    |          | 4    |      | 6    |      | 8    | 9    |      |                                                      |      |      |      |          |      |      |      |      |      |        |      |
| Electronics for distributed antenna system |      | 1    | 2    |          | 4    |      | 6    |      | 8    | 9    |      | Mechanisms                                           |      |      |      |          |      |      |      |      |      |        |      |
| UP/DW converter efficient power amp.       | 3    |      | 6    |          | 8    | 9    |      |      |      |      |      | S/A Deployment Mechanism (SDM)                       | -    | 4    | 5    | 6        |      | 8    |      |      |      |        |      |
| Mobile phone based transponder             | 2    | 3    |      | 4        |      | 6    |      | 8    | 9    |      |      | Deorbit Deployment Mechanism (DDM)                   | -    | 4    | 5    | 6        |      | 8    |      |      |      |        |      |
|                                            |      |      |      |          |      |      |      |      |      |      |      | Hold down and Release Mechanism (HDRM)               | _    | 2    | J    | 0        | 8    | 0    |      |      |      |        |      |
| DHS                                        |      |      |      |          |      |      |      |      |      |      |      |                                                      |      | 2    | _    |          | 8    |      |      |      |      |        |      |
| Control Distribution Unit                  | 2    | -    | 4    | 8        |      | 9    |      |      |      |      |      | Nano-Terminator Deorbit Module (NTDM)                | _    | 2    |      | <u> </u> | 0    |      |      |      |      | —      |      |
| General purpose Interface ASIC             |      | 3    |      | 5        | 8    |      |      |      |      |      |      |                                                      |      |      |      |          |      |      |      |      |      |        |      |
| DCM (SoC ASIC) -System on a chip-          |      |      |      | 0        | Ŭ    |      |      |      |      |      |      | Thermal                                              |      |      |      |          |      |      |      |      |      |        |      |
| bolin (000 Abio) - bysicin on a chip-      |      |      |      |          |      |      |      |      |      |      |      | Black paint                                          | 8    |      |      |          |      |      |      |      |      |        |      |
| Demor                                      |      |      |      |          |      |      |      |      |      |      |      | MiSER (Miniature Satellite Energy Regulating Radiate | r) 8 |      |      |          |      |      |      |      |      |        |      |
| Power                                      |      |      |      | <u> </u> |      | _    |      |      |      |      |      | Thin Plate Heat Switch                               | 8    |      |      |          |      |      |      |      |      |        |      |
| Solar Array                                | 2    |      | 3    |          | 4    |      | 5    | _    | 6    | ļ    |      | Heater line (2 heaters+1 sensor)                     | 8    |      |      |          |      |      |      |      |      |        |      |
| Battery Pack                               | 2    | 3    | 4    | 5        | 6    | 7    | 8    | 9    |      |      |      | Heat pipe                                            | 8    | 1    |      |          |      |      |      |      |      |        |      |
| Power Conditioning                         |      | 4    | 5    | 6        | 7    | 8    |      |      |      |      |      | MLI blankets                                         | 8    |      |      |          |      |      |      |      |      |        |      |

- The NanoSat mission scenarios provide significant onboard resources, mass and volume to P/L.
- Based on disruptive approach at system level and on an extensive multi-year development programme of significant investments.

## NEOMEx – NanoSat - MiniMEX Correspondence I



## System aspects:

•

•

.

- NEOMEx and NanoSat study correspond closely in terms of requirements, standard interfaces, modularity. MiniMEX is constrained by redundancy requirements.
- NanoSat as case study for NEOMEx concept, while MiniMEX is a case study for large missions.
- Structure aspects:
  - NEOMEx pursues a more advanced concept including multifunctional structures and integrated harness.
- Mechanisms aspects:
  - No critical mechanisms technologies identified in NEOMEx theme.
  - NanoSat mechanisms are available but requires adaptation. MiniMEX miniaturisation enabled scaled-down requirements for mechanisms.
  - Propulsion aspects:
    - NanoSat reaches further defining specific propulsion needs (more kinds of modules).
    - NanoSat is constrained by perceived TRL and therefore limited to chemical propulsion.
    - MiniMEX has a huge delta-v requirement that is the main design driver and a bottleneck for miniaturisation.

## NEOMEx – NanoSat - MiniMEX Correspondence I



Power aspects:

- Clear gap in NEOMEx on power converter technology and power distribution systems.
- Candidate technologies outlined in NanoSat and MiniMEX study.
- Power converter and distribution components are key to MiniMEX integration and architecture.
- All show a need for improved solar power generators.
- AOCS aspects:
  - Development scope for AOCS corresponds very well between NEOMEx, NanoSat and MiniMEX.
  - Several specific sensors and actuators are not yet covered in NEOMEx.

Data handling aspects:

- Approach and architectures correspond well.

Telecommunications aspects:

- NEOMEx theme pursues more advanced options on device level.
- NanoSat addresses integration and modularity to a higher degree.
- MiniMEX identifies GaN technology as promising.

Thermal aspects:

- NEOMEx pursues more advanced thermal control capabilities, but with lower TRL
- than the NanoSat or MiniMEX baseline.



- The NEOMEx theme pursues advanced miniaturisation as a vehicle of disruption to how spacecraft are built and missions are designed.
- The disruptive miniaturisation theme continues targeting enabling technologies for extreme mass reduction, for applications like NEOMEx, NanoSat, and MiniMEX-like missions.
- NanoSat study can serve as a case study in the NEOMEx concept, while MiniMEX serves a potential new miniaturisation theme for larger spacecraft.
- Efforts to study low-cost manufacture of modules is needed.
- Normal miniaturisation development can feed into a disruptive miniaturisation theme, with some adaptation.

•

•

.