

MOEMS for space: DMD chip evaluation

Frederic Zamkotsian¹, Kyrre Tangen², Rudy Barette¹, Patrick Lanzoni¹, Emmanuel Grassi¹, Christophe Fabron¹, Luca Valenziano³, Laurent Marchand⁴, Ludovic Duvet⁴

> Laboratoire d'Astrophysique de Marseille, France Visitech, Norway INAF / IASF, Bologna, Italy European Space Agency, The Netherlands

Frederic Zamkotsian

Universe expansion

Frederic Zamkotsian

EUCLID

DMD - option

- Multi-Object Spectrograph option based on DMD
- DMD 2048x1080 Micromirrors made by TI
- DMD space evaluation (Visitech LAM)

Multi-Object Spectroscopy (MOS)

Frederic Zamkotsian

MOEMS developments

NASA-GSFC Micro-shutters

Selected for JWST NIRSpec

LAM-EPFL Micro-mirrors

100 x 200 mirrors

Workshop MNT ESA 2010, Noordwijk, 13-16 September 2010

Programmable slits in Europe (1/2)

Frederic Zamkotsian

Multi-Object Spectroscopy: bench demonstration Object selection

Operation at cryogenic temperature (92K)

Frederic Zamkotsian

DMD chip

- □ 2048 x 1080 micromirrors (13.68 µm pitch)
- Designed for use at ambient temperature, at atmospheric pressure and to be actuated several thousand times per second,

DMD operation in EUCLID

- Vacuum, -40°C, static patterns for 1500s
- Device evaluation: under vacuum, at cold temperature, life test, thermal cycling, physical analysis, radiations, vibration & shock

DMD tag	Test
DMD #20	Low temperature stress test
DMD #11	Vacuum in DMD package
DMD #20	Thermal chamber (LAM)
DMD #10	Low temperature nominal test (3 cycles)
DMD #5	Life test (1038 hours)
DMD #22	Thermal cycling (550 cycles)
DMD #xx	Physical analysis
DMD #12	Preliminary room temperature: Problem
DMD #13	Preliminary room temperature: Problem
DMD #16	Total Ionising Dose
DMD #21	Total Ionising Dose
DMD #15	Protons
DMD #19	Preliminary room temperature: Problem
DMD #7	Vibrations
DMD #6	Shocks
DMD #17	MOS tests
Total: 16 DMDs tested at LAM	

Frederic Zamkotsian

Electronic test vehicle

Frederic Zamkotsian

The electronic test vehicle consists of a formatter board and a DMD board

- The main components includes 2 DDP1000, 2 DAD1000 and 1 high resolution DMD
- The FPGA handles simple image processing and some very important modification to the DAD1000 control signals

Frederic Zamkotsian

Optical tests

Frederic Zamkotsian

Cold temperature test set-up VISITECH

Frederic Zamkotsian

Cold temperature test set-up VISITECH

Frederic Zamkotsian

- Optical parameters
 - → 50 zones to be imaged
 - → 1 zone = 205 x 216 µM
 - → 1 zone = 44280 µM
 - 1k 1k camera
 - → 4.07 x 4.07 pixels / μM
 - Illumination by a collimated beam
 - Imagery: two doublets (200mm – 400mm)
 - Device scanning using Newport – MicroContrôle motorized stages (XYZ)

Frederic Zamkotsian

Frederic Zamkotsian

Test patterns for EUCLID

Frederic Zamkotsian

Test patterns for EUCLID

Frederic Zamkotsian

Patterns

VISITECH

DMD under test

Workshop MNT ESA 2010, Noordwijk, 13-16 September 2010

Mirrors behaviour: fine analysis

□ Affected mirrors are blocked, lossy or weak mirrors

Average throughput and Centroid calculation

Cold temperature step stress test

- First tested device
- 12 temperature steps (+20, +10, 0, -10, -20, -30, -35, -40, -45, -50, -55, -60)

DMD #20

Frederic Zamkotsian

DMD #20

Frederic Zamkotsian

DMD #20

Frederic Zamkotsian

DMD #20

Frederic Zamkotsian

DMD #20

Frederic Zamkotsian

DMD #20

Frederic Zamkotsian

DMD #20

Frederic Zamkotsian

DMD

- Permanent failure on some micro-mirrors
- □ Failure starts at -55°C
- □ Safe operation at -40°C

DMD tag	Test
DMD #20	Low temperature stress test
DMD #11	Vacuum in DMD package
DMD #20	Thermal chamber (LAM)
DMD #10	Low temperature nominal test (3 cycles)
DMD #5	Life test (1038 hours)
DMD #22	Thermal cycling (550 cycles)
DMD #xx	Physical analysis
DMD #12	Preliminary room temperature: Problem
DMD #13	Preliminary room temperature: Problem
DMD #16	Total Ionising Dose
DMD #21	Total Ionising Dose
DMD #15	Protons
DMD #19	Preliminary room temperature: Problem
DMD #7	Vibrations
DMD #6	Shocks
DMD #17	MOS tests
Total: 16 DMDs tested at LAM	

Frederic Zamkotsian

Detection at +20°C

Lossy micro-mirrors + weak micro-mirrors: 19

No blocked mirror

Detection at -38°C

Lossy micro-mirrors + weak micro-mirrors: 22

No blocked mirror

Detection at -40°C

Lossy micro-mirrors + weak micro-mirrors: 18

No blocked mirror

Detection at -40°C

Lossy micro-mirrors + weak micro-mirrors: 18

No blocked mirror

- The micro-mirrors are tilting at -40°C
 - ➔ No blocked mirrors, 15 lossy mirrors
 - Differential affected mirrors between ambient and cold, in EUCLID mode, as low as: 3 to 5 of 2 million mirrors
- Same behavior for mirrors tilting frequently or fixed in a position as for EUCLID mission (duration 1500s)
- If lossy mirrors are detected at ambient, they stay lossy at cold temp.
- Additional affected mirrors are only in the weak position

DMD tag	Test
DMD #20	Low temperature stress test
DMD #11	Vacuum in DMD package
DMD #20	Thermal chamber (LAM)
DMD #10	Low temperature nominal test (3 cycles)
DMD #5	Life test (1038 hours)
DMD #22	Thermal cycling (550 cycles)
DMD #xx	Physical analysis
DMD #12	Preliminary room temperature: Problem
DMD #13	Preliminary room temperature: Problem
DMD #16	Total Ionising Dose
DMD #21	Total Ionising Dose
DMD #15	Protons
DMD #19	Preliminary room temperature: Problem
DMD #7	Vibrations
DMD #6	Shocks
DMD #17	MOS tests
Total: 16 DMDs tested at LAM	

Frederic Zamkotsian

- Life test concept
 - EUCLID-type patterns applied during whole life test
 - Identical duty cycle for all mirrors
 - Optical tests done during whole life test
- Actual test cycle
 - Pattern 1 during 1500s (central line tilting)
 - □ Tilting of the whole device between pattern 1 and pattern 2: 60s
 - □ Pattern 2 during 1500s (central line tilting)
- Life test dates
 - Lasted for **1038 hours**
 - □ 13 full device measurements during the life test

No degradation of DMD performances after 1038 h of life test

Frederic Zamkotsian

222

223

224

225

226

2280

Pixel info.(1278, 2226) 100.15

1270

Pixel info(1275, 2225) 181 78

Pixel info(2384, 688) 147.

1270 1280 1290 1300 1310 1320 1330 1340 135

1300 1310

1320 1330 1340

2410 2420 2430 2440 2450 2

Failure analysis (life test)

VISITECH

Life test, 3 blocked mirrors, +20°C, -41°C/0h, -41°C/1038 hours

Zone 4

Workshop MNT ESA 2010, Noordwijk, 13-16 September 2010

DMD tag	Test
DMD #20	Low temperature stress test
DMD #11	Vacuum in DMD package
DMD #20	Thermal chamber (LAM)
DMD #10	Low temperature nominal test (3 cycles)
DMD #5	Life test (1038 hours)
DMD #22	Thermal cycling (550 cycles)
DMD #xx	Physical analysis
DMD #12	Preliminary room temperature: Problem
DMD #13	Preliminary room temperature: Problem
DMD #16	Total Ionising Dose
DMD #21	Total Ionising Dose
DMD #15	Protons
DMD #19	Preliminary room temperature: Problem
DMD #7	Vibrations
DMD #6	Shocks
DMD #17	MOS tests
Total: 16 DMDs tested at LAM	

Frederic Zamkotsian

- Thermal cycling of DMD #22
 - Pre-test at room temperature
 - □ First test at cold temperature, -40°C
 - Five cycles [room temperature / -40°C], device non operating
 - □ Test at cold temperature, -40°C
 - Shipping to INAF/IASF

- 249 cycles [room temperature / -40°C], device non operating
- Shipping to LAM
- □ Test at cold temperature, -40°C, at LAM
- □ 313 cycles [room temperature / -40°C], device non operating
- □ Shipping to LAM
- Test at cold temperature, -40°C, at LAM

No degradation of DMD performances after thermal cycling

Frederic Zamkotsian

DMD tag	Test
DMD #20	Low temperature stress test
DMD #11	Vacuum in DMD package
DMD #20	Thermal chamber (LAM)
DMD #10	Low temperature nominal test (3 cycles)
DMD #5	Life test (1038 hours)
DMD #22	Thermal cycling (550 cycles)
DMD #xx	Physical analysis
DMD #12	Preliminary room temperature: Problem
DMD #13	Preliminary room temperature: Problem
DMD #16	Total Ionising Dose
DMD #21	Total Ionising Dose
DMD #15	Protons
DMD #19	Preliminary room temperature: Problem
DMD #7	Vibrations
DMD #6	Shocks
DMD #17	MOS tests
Total: 16 DMDs tested at LAM	

- Radiation test: Total Ionizing Dose (TID), done at ESTEC
- All measurements and visual observations show that
 - The DMD starts to get affected at a dose rate of approximately 10 Krads
 - The DMD will work with only minor artifacts up to a dose rate of about 16 Krads

Frederic Zamkotsian

No degradation of DMD performances after TID radiation

Frederic Zamkotsian

Protons at KVI

Frederic Zamkotsian

Workshop MNT ESA 2010, Noordwijk, 13-16 September 2010

VISITECH

- Protons tests done at KVI (Netherlands)
- Optical tests (irradiated area: half DMD)
 - Pre-test and post-test at room temperature (LAM)
 - Optical measurement during protons flux on DMD
- Energy
 - □ Energy on silicon after crossing the DMD window: 34.7 MeV
 - Beam FWHM: 6.2mm
- Two radiation regimes
 - Low flux at 6 10⁵ p/cm²/s during 300s
 - High flux at 5 10⁷ p/cm²/s during 896s in order to reach a total dose of 10 Krad on DMD
- Experiment results
 - □ Failure of the protons beam (low flux during 120s)
 - During the irradiation, no transient effect observed

Frederic Zamkotsian

DMD tag	Test
DMD #20	Low temperature stress test
DMD #11	Vacuum in DMD package
DMD #20	Thermal chamber (LAM)
DMD #10	Low temperature nominal test (3 cycles)
DMD #5	Life test (1038 hours)
DMD #22	Thermal cycling (550 cycles)
DMD #xx	Physical analysis
DMD #12	Preliminary room temperature: Problem
DMD #13	Preliminary room temperature: Problem
DMD #16	Total Ionising Dose
DMD #21	Total Ionising Dose
DMD #15	Protons
DMD #19	Preliminary room temperature: Problem
DMD #7	Vibrations
DMD #6	Shocks
DMD #17	MOS tests
Total: 16 DMDs tested at LAM	

Frederic Zamkotsian

Failure analysis (vibrations) VISITECH

No degradation of DMD performances after vibrations

+20°C, before vibrations -40°C, after vibrations

MIL-STD-883F, - method 2005 (vibration fatigue) - method 2007 (vibration at variable frequency)

Frederic Zamkotsian

Failure analysis (shocks) VISITECH

No degradation of DMD performances after shocks

-40°C, after shocks

Done at ESTEC,

MIL-STD-883 Method 2002, condition B: 1500g, 0.5ms, **5times each axis**

MOS tests

MOS tests: object selection

MOS tests: object selection

Contrast = 2250

- Under vacuum and low temperature
 - Operating device vacuum, -40°C, pattern set for 1500s
 - No additional blocked mirror, minor defects for 19 mirrors
 - Few blocked mirrors at -55°C

Life test

- Space environment for 1038 heures
- No major failure
- Thermal cycling
 - □ 550 cycles
- Radiations
 - TID and protons
 - Electronics OK
 - DMD memory cells affected above 10 Krads
- Vibration & shocks

No major failure in space environment

Frederic Zamkotsian

- Cold temperature test, life test, thermal cycling, radiation tests, vibrations tests and MOS-like tests have been completed:
 - The DMD chip presents no major failure in the ESA specified space environment
- Strong interest of the consortium to continue this development
- Issues

Space compatible electronics has to be developed DMD window with IR coating is highly recommended

TI support is important

Frederic Zamkotsian