7th ESA Round Table on MNT for Space Applications

The Qualification and Market Entry of the SiREUS MEMS Coarse Rate Sensor for Space Mission Applications

14 September 2010

Mark Hartree, Jim Robertson, Patrick Hutton, (1) Hannah Crowle (2), Dick Durrant (3), Daniele Temperanza (4)

Content

The background route to SiREUS

- Teaming and UK capabilities
- Principles of operation
- Programme plan
- SiREUS configuration

Challenges overcome during development

- Non MEMS, qualification and manufacturing
- Characteristics of MEMS sensors
- Pre-calibration of the detector
- Product assurance of MEMS
- Results
 - In orbit performance on Cryosat-2
 - EQM testing
 - SiREUS performance achievements
- Summary
- Next steps

The background route to SiREUS

- Presentation take to story forward from previous presentations
 - 4th MNT (2003) Overview of basic technology
 - 6th MNT (2007) Status of development and Cryosat-2 FExp
 - 7th MNT (2010) Update of product development with results
 - Development of gyro technologies by the ESA harmonisation roadmap
 - to supply reliable, low cost, coarse sensors that enable robust, simple building blocks in AOCS systems
 - Evolution of MEMS Coriolis gyro technology in the UK showed potential for spin-in to the Space sector
 - Definition of market requirements for a Coarse Rate Sensor led to a viable investment case
 - Competitive procurement won by a UK consortium of three companies.
 - MEMS Rate Sensor (MRS) development programme leads to SiREUS (<u>EU</u>ropean <u>Si</u>licon <u>R</u>ate <u>S</u>ensor)

The development team

Teaming and UK Capabilities

Principles of operation

• A planar ring structure, etched from silicon, held in a resonating state by a primary drive current.

 Angular rate is determined from the shift in the secondary current required to null the Coriolis effect.

Application of MEMS gyros

7th ESA Round Table on MNT for Space Applications

- Planar ring with 8 support legs in a vacuum cavity
- Discrete capacitor plates positioned around the ring

- Mass, stiffness, geometry and characterisation determined during precision manufacture
- Power, balancing forces and control feedback
 determined by electronic design

Programme Plan

SiREUS – Configuration

Sensor Type Mass Power	3 axis rate sensor < 0.8kg 5.1W	
Bandwidth	10 Hz (max)	
Measurement Output Rate	2 - 20 Hz (settable), 0 Hz = no output	
Switch-on to Switch-on Change	< 10 deg/hr (with off time constraints)	
Angular Rate Bias	10 - 20 deg/hr	
Rate Bias Drift	5 - 10 deg/hr over 24 hours with ±10°C	
Scale Factor Linearity	< 2000 ppm over input range	
Angular Random Walk	0.1 - 0.2 deg/√hr	
Noise Equiv't Rate	< 1 deg/hr (defined as flicker rate)	
Interface Rad Tolerance	Analogue, RS422 100krads, 18 yr GEO	

Several challenges overcome during the development and qualification

- Non MEMS issues
 - Power supply start-up and temperature dependency
 - · Parts supply and component obsolescence
- Rapid supply to mission
 - Lessons-learnt feedback into design from Cryosat-2 FExp development
- Environmental qualification
 - Initial thermal restriction on baseline PSU limits upper performance temperature
 - FPGA mounting at high g levels. Solved by Structural Model tests, and specification agreed with ESA

Manufacturing of MEMS for Space

- · Commercial performance is a long way from Space requirements
- High volume reliability and repeatability with low volume batches
- Trade-offs and design tolerances
- Design right, processes right, electronic integration right

Cost containment

• High reliability and ITAR free.....

Characteristics of capacitive MEMS-based sensors

A Finmeccanica Company

GALILEO

- Move to volume production line
 - Change in performance stabilisation
- Cause / affect
 - Migration of charged species to capacitor plate surfaces

- · Initial drift in scale factor and bias on start
- Solution
 - Review of detector design and iteration of manufacturing processes
 - Refined calibration and characterisation during system integration
 - Fundamental, device and unit level management of system

Pre-calibration of detector

- Detectors are assessed for scale factor and bias stability prior to system-level calibration
 - Uncalibrated detector performance specification agreed
- Scale factor within specification of < 2000ppm
- Bias within specification of 10 20 deg / hr
- Close integration with electronics provides opportunities for better performance than seen precalibration
- Further activities identified to remove even this small residual error

Product assurance with MEMS

- Agreed procurement specification
- MEMS Evaluation Flowchart adapted ESCC 2269000 and developed for Phase 3
- Development of PAD and PID for MEMS detector

Figure 9-1 Evaluation Test Programme (Chart I)

INSPECTION

Para 5.5 External Visual Inspection Para 5.6 PIND

Para 5.9 Marking and Serialisation

Hermeticit

Para 5.4 Electrical Parameters go-no-go

Radiographic Inspection

n = 106

100 % Read and Record. Para. 6 Tables 2 and 3 of Detail Specification

Para 5.2 Dimensions go-no-go

Para 5.3 Mass

Para 5.7

Para 5.8

Para. 5

100 %

100 %

100 %

100 %

100 %

100 %

In-orbit performance on Cryosat-2

- Launched 8 April 2010
- Early-build detectors, and system configured for limited functionality
 - Only X and Z axes operative
 - Known anomaly on Y axis before launch
- FExp X and Z rates verified against Star Tracker inertial measurement

EQM testing

- Physical Properties
- Functional Test
- Calibration and Check (Thermal) Tests
- Performance (Thermal and Rate) Tests
- Environmental
 - Vibration Tests
 - Shock Tests
 - Thermal Vacuum Tests
 - EMC/ESD Tests

meccanica Compan

EX GALILEO

THERMAL VACUUM (Deg C)			\sim
PSU	Phase 2	Phase 3	
T min	-40	-40	
T max	+60	+75	

- At initial unit switch-on with base parameters UNCOMPENSATED
 - A = Stabilisation time in 200 mins
 - B = Quite noisy rate, but the average is well behaved
 - C = Steady output at ~20 deg/ hr

- CALIBRATED switch on post compensation
 - A = Stabilisation time in 30 mins
 - B = Less noisy rate, but the average is well behaved
 - C = Steady output at ~10 deg/ hr

• CALIBRATED unit undertaking slew manoeuvres while on rate table at 20C

Summary

- Assembly of UK team with ESA guidance and support
 - careful consideration of internal capabilities and those of all suppliers helps to ensure that the process 'challenges' are shared around equitably.

Preparing MEMS for Space

- Adaptation of terrestrial MEMS technology and processes for space-grade instruments
- Several new developments
 - Space-grade electronics to accompany the detector
 - refinement of compensation loops to obtain optimum detector performance
 - Compact housing with high environmental capability
- Delivery of FExp to Cryosat-2 programme now operational in-orbit
- Detailed design, build and test of SiREUS MEMS Qualification Model
- The MEMS detector is not standalone
 - requires close integration
 - control electronics
 - · test and calibration procedures
 - there are inevitably trade-offs to be made, for example, between the MEMS fabrication tolerances and the precision of the electronics

The next steps

- Post qualification upgrades
 - 1. ITAR-free PSU
 - Higher efficiency
 - Greater capability
 - · Fits within existing housing
 - 2. Replacement of FPGA by ITAR-free ASIC
 - Multi-Project Wafer approach for European-sourced ASIC

Progress

-Design Completed - EQM PSU in build

- Same package style as present FPGA
- Functionality/capability improvements available
- Further evaluation testing planned at ESA and at Astrium
- Further miniaturisation, performance improvement, integration for explorers & Smallsats...?
- SiREUS selected on Sentinel-3A/3B, Gokturk, Orbital Sciences and TechDemoSat

Progress: - PDR held with ESA - Logic review with Atmel next

Progress: - Pending

SiREUS – Part of the Family

Contacts and acknowledgements

For SiREUS Sales and marketing:

UK Space capability manager mark.hartree@selexgalileo.com +44 (0) 131 343 8123

Acknowledgements

(2) Hannah Crowle

(3) Dick Durrant

(4) Daniele Temperanza

MEMS detector technology manager hannah.crowle@goodrich.com +44 (0) 175 272 2375

Space electronic design senior engineer <u>dick.durrant@sea.co.uk</u> +44 (0) 137 385 2169

Technical officer <u>daniele.temperanza@esa.int</u> +31 715 656 693

