

Reliability assessment of RF MEMS switches

C. Seguineau¹, A. Broué¹, J. Dhennin¹, T. Fourcade¹, J.M. Desmarres², F. Courtade², M. Colin³ 1- NOVA MEMS, 2- CNES, 3- MEMSCAP

7th ESA Round Table on MNT for Space Apps

© Copyright 2008 - Reproduction is not allowed without authorization

Outline

- Introduction
- Approaches for Reliability assessment
- Accelerated aging
- Physics of Failure
- Conclusion

Outline

Introduction

- Approaches for Reliability assessment
- Accelerated aging
- Physics of Failure
- Conclusion

The POLYNOE EDA Project

• Aim: Prove the Physics of Failure concept for reliability assessment of MEMS switches

• Several technologies for switching operation

	MESFET	PIN Diode	MEMS
Series Resistance (Ω)	3 to 5	1	< 1
Loss @1GHz (dB)	0.5 to 1.0	0.5 to 1.0	0.1
Isolation @1GHz (dB)	20 to 40	40	> 40
IP3 (dBm)	40 to 60	XLIM Lab: Nanogap switches (a few tens of nanoseconds !)	
1 dB compression (dBm)	20 to 35		
Size (mm²)	1 to 5		
Switching speed	~ ns	~ µs	~ µs
Control Voltage (V)	8	3 to 5	3 to 30
Control Current	< 10 µA	10 mA	< 10 µA

© Copyright 2008 - Reproduction is not allowed without authorization

 Research on contact characterization for MEMS switches driven by the necessity to reach a <u>high-reliability</u> level for micro switch applications

 Research on contact characterization for MEMS switches driven by the necessity to reach a <u>high-reliability</u> level for micro switch applications

- FMEA: identification of the main failure mechanisms
 - Field induced dielectric charging

Temperature induced deformation of the structures

Outline

- Introduction
- Approaches for Reliability assessment
- Accelerated aging
- Physics of Failure
- Conclusion

• Several approaches

- Blackbox approach: "RF Switches as a black box".
 - Unknown die / design / materials / technological parameters
 - Observation only at I/O
 - Stress / stimuli is applied according to mission profile (with margins)
 - GO/NOGO Results

🤃 ! Switch as a device

We should considered it as a system → study of the failure mechanisms of subsystems (moving part, electrical contact...)

- Accelerated aging: inputs ?
- … ! Statistical approach → irrelevant for dvpt of new technologies.

• Several approaches

New Component

 New technologies: Production line ? Materials & Design

The mechanical properties differ from MacroWorld:

- Strong interaction between microstructural features and the geometry of the thin coatings (eg. Thicknesses)
- Microstructural properties greatly influenced by the process (kind of deposition, temperatures, sacrificial layers...)

- Design for reliability
 - » Working on the very first blocks
 - » Use feedback for the design of new comp.

Design for reliability: necessity of trade-offs

Outline

- Introduction
- Approaches for Reliability assessment
- Accelerated aging
- Physics of Failure
- Conclusion

- Creep (1/2)
 - » Model:

$$\dot{\varepsilon} = A \, \frac{\sigma^n}{d^p} \exp\left(-\frac{Q}{RT}\right)$$

- Power law for secondary creep (*n* is the creep exponent)
- Arrhenius acceleration factor(Q is the activation energy)
- » Experiment
 - Characterization of thermally actuated MEMS switches (MEMSCAP, EDA POLYNOE program)
 - Loss of isolation with cycles: gap between the electrodes

Before

After 3 weeks @150°C (closed position)

- Creep (2/2)
 - Modelling the evolution of the gap with temperature and **》** storage duration 14

200°C

- Cycling
 - » Great influence of the testing method on the reliability
 - Progressive increase of the contact resistance for cold switching
 - Erratic behaviour in hot switching

• DC Stress / ESD aging for charging effect quantification

- Radiations
 - » Expected effects: Damage of the dielectric layer
 - modification of V_{pi}/V_{po}
 - Increase of leakage current
 - Single event transient: auto-actuation

Outline

- Introduction
- Approaches for Reliability assessment
- Accelerated aging
- Physics of Failure
- Conclusion

Material level

- Evaluate the mechanical properties through mechanical actuation of dedicated specimens
- » Wide range of materials
 - Metals (and alloys)
 - Ceramics
 - Polymers
- Deposited on substrate or freestanding thin coatings

- Micro- tensile experiments
 - » Home-made Developments (NOVA MEMS : C. Seguineau), in collaboration with SIMaP Laboratories (M. Ignat) and INL (C. Malhaire)

- Material level: µtensile test on NiCo specimens (MEMSCAP)
 - » Monotonic experiments
 - Young's modulus
 - Yield stress
 - Strain hardening
 - Ultimate strength

- Material level: µtensile test on NiCo specimens (MEMSCAP)
 - » Multicycle experiments: Damage assessment

- Electrical contact (subsystem level)
 - » Monitoring R_c evolution versus:
 - Intensity I
 - Load applied F
 - Compliance level U
 - Switching mode (mechanical, cold, hot)
 - Number of cycles *n*
 - Hold duration t (creep)
 - » High reproductibility of the actuation load (intensity, location on the beam)

Bridge

• Electrical contact (subsystem level)

A. Broue et al., Characterization of Au/Au, Au/Ru and Ru/Ru ohmi contacts in MEMS Switches improved by a novel methodology. MOEMS/MEMS 2010, SF, CA.

© Copyright 2008 - Reproduction is not allowed without authorization

- Electrical contact (subsystem level)
 - » Modeling of electrical resistance vs. load applied
 - Great influence of contaminant films

Outline

- Introduction
- Approaches for Reliability assessment
- Accelerated aging
- Physics of Failure
- Conclusion

Conclusion

• Contact Material:

- » Performances of the electrical contact strongly linked with the materials used to perform the contact
- » Trade-off between mechanical and electrical performances to reach the best reliable operations : "Design for reliability"
- » Contact material have to be :
 - Good electrical conductor for low loss
 - High melting point to handle power
 - Appropriate hardness to avoid stiction phenomenon
 - Chemical inertness to avoid oxidation
- Specific experiments and methods developed, but...

➔ Characterization only. Which standards for a qualification ?