

RF MEMS - Single Switch Element
 P.Heeb, W. Tschanun, R. Buser

ches
CENTRE NATIONAL DETUDES SPATIALE:

\circ Ecole Nationale (] Supérieure des Mines

NDAMEMS

Outline

- Introduction
- Mathematical-Physical Model of the Electro-Mechanical Transducer
- Simulation ResultsSwitching TimeContact Bouncing and free OscillationRe-feeded Bias Power and Cross-ActuationEnergy transferred to contacts
- FabricationDevelopment historyProcess follow-upProject Outlook

To be published

Introduction

- Advantages of RF MEMSwitches
\square High isolation in the off-state
\square Low insertion loss in the on-state
\square Low power consumption
\square High cut-off frequency
\square High linearity (IP2)
\square High intermodulation performance (IP3)

Challenges of RF MEMSwitches

\square Short switching time
\square Low actuation voltage
\square Robust contact materials
\square High power handling
\square Robust packaging
\square High reliability

Mathematical-Physical Model

- Electro-mechanical Transducer

\square Generalized arrangement of a capacitive coupled EMT
\square Electrical Subsystem: Bias line circuitry
\square Mechanical Subsystem: resonating cantilever incl. squeeze-film damping

Mathematical-Physical Model

- Electro-mechanical Transducer

Description of mechanical Part including (non-harmonic parametric values) to reproduce bouncing, energy transferred to the contact.

$$
m\left(x_{s}, \omega_{1}\right) \ddot{z}\left(x_{s}, t\right)+b\left(x_{s}, t\right) \dot{z}\left(x_{s}, t\right)+k\left(x_{s}\right) z\left(x_{s}, t\right)=F_{\text {ext }}\left(x_{S}, t\right)
$$

$$
z\left(x_{s}, t=0\right)=0
$$

$$
z\left(x_{s}, t=t_{c}^{i}\right)=z_{c}\left(x_{s}\right)
$$

$$
\begin{aligned}
& \dot{z}\left(x_{s}, t=0\right)=0 \\
& \text { Description of ele }
\end{aligned}
$$

$$
\begin{aligned}
& \dot{z}\left(x_{s}, t=t_{c}^{i}\right)=-\kappa \dot{z}\left(x_{s}, t=t_{c}^{i}\right)^{2} \\
& \text { e backward coupling by the capacit }
\end{aligned}
$$ and current respectively.

$$
\ddot{V}(t)=\frac{1}{R_{s} C_{s} C(t)}\left[\begin{array}{l}
C_{s} \dot{V}_{\text {ext }}(t)- \\
\left(\dot{C}(t)+R_{s} C_{s} \ddot{C}(t)\right) V(t)- \\
\left(C_{s}+C(t)+2 R_{s} C_{s} \dot{C}(t)\right) \dot{V}(t)
\end{array}\right]
$$

$$
i(t)=\frac{d Q(t)}{d t}=\frac{d(V C)}{d t}=V \dot{C}+C \dot{V}
$$

Simulation Results

- Dynamics of the RF Switch

\square Two resonant modes at different states: off-state / on-state
\square State space trajectory of the of the cantilever tip

NTB INTERSTAATLICHE HOCHSCHULE FÜR TECHNIK BUCHS

To be published

Simulation Results

- Switching Time and Contact Bouncing

\square The switching time of 9μ s corresponds to a 50 V actuation signal with $50 \mathrm{~V} / 1 \mu$ s rising edge and a momentum absorption coefficient for the contact of 5\%.
\square The resonant mode in the off-state is strongly dependent of the squeeze-film damping

NTB INTERSTAATLICHE HOCHSCHULE FÜR TECHNIK BUCHS

Simulation Results

- EM Coupling

\square The decreasing velocity in the on-state is caused by the non-linear squeeze-film damping
\square The oscillating current is coupled from the resonating cantilever at a given voltage.

NTB INTERSTAATLICHE HOCHSCHULE FÜR TECHNIK BUCHS

Simulation Results

- Contact Conditions

\square The energy balance is solved for $E_{a b s}$ assuming a momentum absorption coefficient of $\alpha=5 \%$

$$
\begin{aligned}
E_{e x t}= & E_{k i n}+E_{p o t}+E_{d a m p}+E_{a b s}+ \\
& E_{c a p}+E_{R s}+E_{C s}
\end{aligned}
$$

\square Transferred energy calculated via energy balance (blue line) blanked by the absolute error at $\alpha=0 \%$ (red line).

$$
E_{a b s}=\int \alpha \frac{d p(t)}{d t} v d t
$$

\square The energy transferred at the first bounce is $1.6 \mu \mathrm{~W} \mu \mathrm{~s}$

Simulation Results

- Re-feeded Power
- A comparable high energy is stored in the deflected cantilever, which is released within very short time, as soon the voltage is switched off (trailing edge $-50 \mathrm{~V} / 1 \mu \mathrm{~s}$).

To be published

Simulation Results

- Pull-In / Release Voltage
\square The pull-in Voltage lies is expected to be within 35-40V
\square The more system specific response, the release voltage is around 27 V .
\square Forces aren't in equilibrium, damping action dominates spring restoring force.

NTB
INTERSTAATLICHE HOCHSCHULE FÜR TECHNIK BUCHS

To be published

Reinhardt-Microtech Wangs (CH)

- Development History

Initiating Industrial Partner: Thales Alenia Space (TAS) (2005)
\square Development of first switches at the NTB (2005-2006)
\square European Eurimus (EM95) Project SMARTIS (2007-2010) \square Project partners: TAS, Xlim, CNES, Novamems, Armines
\square CTI Project to focus on Packaging Technology (2010-2013)

NTB
INTERSTAATLICHE HOCHSCHULE FÜR TECHNIK BUCHS

Actual Status - Single Switch Element

Thank you for your attention!

To be published

