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e Introduction
- Capacitive MEMS Switches
e Dielectric Charging Failure Modes
- CV shift
- CV narrowing
e Charging model
e System level switch model incorporating charging
e A circuit based approach towards improved reliability
- Concept
- Implementation
e Conclusions
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Capacitive RF Switches
« Operation
« shunt
. Advantage
o Low loss
« Low power consumption
« IC compatible
« Applications:
 Satellite switching networks

« Telecommunications e.g.
tunable matching networks,
phase shifters, tunable
antennas

. Challenges: Reliability

« Stiction: Primary failure
mechanism
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e Surface Micromaching Process

e Suspended electrode: 1um thick
Aluminium (tensile)

e Bottom Electrode: Al1%Si

e Dielectric: 100nm thick PECVD
silicon dioxide

e Sacrifical Layer: polyimide
e Air-gap typically 2um-2.5um
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Stiction is the primary failure mechanism of capacitive MEMS switches
Research efforts are intensive
- Many charging mechanisms and theories have been proposed
- Physical understanding of the problem is still not comprehensive
- Highly device and process dependent
There are two primary manifestations of charging:

- CV shift & CV narrowing
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Charge accumulation in the
dielectric results in a shift in the
CV characteristic

Failure occurs when the release
voltage exceeds OV line and so the
switch does not return to the up-
state after the applied bias is
removed.
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e Efforts to Date largely concentrated on
e Developing a physical understanding of problem
e Structure/Process based solutions

e Electrical approaches: hold down voltages, bipolar actuation, smart bipolar
actuation

e What is proposed here:
- accept charging
- Make your switch smart so CV shift no longer causes failure

A switch whose reliability is limited due to CV shift always has a pull-in voltage
and always has a release voltage
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System Level Model for Switch with Oxide Charging &

Corrective Feedback
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Basic Model used to:

« Determine cycles
to failure

. Investigate
effects of
charging on
switch dynamics

« Bipolar actuation
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Negative bias applied to membrane
=> CV shifts left

Positive bias applied to membrane

=> CV shifts right
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Principle of Operation
e Charge injection results in a shift in the CV characteristic

e The direction of the shift depends on the polarity of the charge
e There always exists a release voltage and a pull-in voltage
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Implementation
= Generate two actuation voltages: V,, , for pull-in & V|, for release

e Polarity of Vhigh and V,_ : opposite to previous cycle (bipolar actuation)

e Switch state is monitored, compared with control signal and corrective
feedback applied when necessary
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e Two approaches are being investigated:
Capacitor Divider and Resonant Detection
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Equivalent Circuit Model for Switch + On-Chip Inductor
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e Presented a system level model that incorporates mechanical, dielectric
charging and feedback effects in single model

e Circuit based approach aims to enhance switch lifetime and ultimately to
guarantee reliability

e Works where charge accumulation in the dielectric manifests itself as a shift in
CvV

e Will come at a cost in terms of power consumption and size

e Approach is aimed at space applications where the outcome is still substantially
smaller and consumes substantially less power than coaxial and waveguide
switches
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