

1

Miniature RF MEMS switched capacitors using nanogaps to achieve 50ns switching speed capabilities

<u>XLIM</u>: A. Verger, <u>A.Pothier</u>, P. Blondy, C.Guines, A. Crunteanu, JC. Orlianges

<u>NOVAMEMS</u>: J. Dhennin, A. Broue <u>CNES</u>: F. Courtade <u>TAS</u>: O. Vendier

- RF MEMS capacitive switches are very promising for microwave communications
 - Low loss performance
 - Low power consumption
 - Superior linearity
- But switching speed are limited to few µs to few ms:
 - Moving a mechanical element required some delay
 - Switching speed firstly relies on the actuator
 - Switching speed also relies on the design

Radant MEMS

Electrostatic Act: tc= 3-5µs

Memtronic (Raytheon)

Electrostatic Act : tc= 1-3µs

Magfusion

Magnetic Act: tc= 0.2 -1ms

- <u>Objective of this work</u>: Study new concepts to achieve
 - switching time below 100 ns 2

Design rules

Type of Actuator

✓ *Parallel plate vertical electrostatic actuator*

- Easy to implement : *Capacitive actuator can also be used as a RF tunable capacitor*
- Small power consumption (nW-µW): Current flow only during moving period
- **Relatively fast:** *At least in the* µs range
- Quite high biasing voltage (tens of V): *Can be reduced using nanogaps actuators*
- Actuator reliability issues : Drift of actuation voltages as function of biasing
- & temperature
 - Sensitivity to RF signal power

Proposed mechanical design approach

✓ *Miniature beam:*

10 factor compared to conventional components

✓ <u>Nanometrics air gaps:</u>

10 factor compared to conventional components ✓ <u>Appropriated structural materials for beams</u>

Switching speed for an electrostatic actuator

<u>Valid if</u> Vact > 1.2Vp à 2Vp

Mechanical resonance frequency has to be high

Radant MEMS

Raytheon

L = 340 um W = 70 um

Thick gold alloy cantilever

- Spring constant: 100 N/m
- Mechanical resonant frequency :50-100 kHz
- Gap distance: 0.8-1.2µm
- Switching time $: 3-5 \ \mu s$

Tensile aluminum membrane

- Spring constant: 6 to 20 N/m
- Mechanical resonant frequency :70 –200kHz
- Gap distance: 2-5µm
- Switching time : $1-3 \ \mu s$

Tensile silicon nitride membrane

- Mechanical resonant frequency :160 –400kHz
- Gap distance: 0.5-0.9µm
- Switching time : 0.5-1 µs

Mechanical design considerations

As short the beam will be as high will be its stiffness

Aluminum membrane (low density material) with $\sigma = 10$ Mpa stress

With w=10 µm, t=0,35µm except *

The structural material can also be influent

<u> Iaterials properties:</u>	($(2.6)^2$	(~2) ²	
	Gold	Aluminum	Alumina	
Young's modulus (GPa)	78	70	<u>380</u>	
Poisson's ratio	0.42	0.345	0.25	
Density (g/cm ³)	19.3	<u>2.7</u>	<u>3.9</u>	
		•		

Slight and stiff materials can be combined to form the beam

Impact on the switching time

Master required actuation voltages

$$V_{pull-in} = \sqrt{\frac{8k}{27\varepsilon_0 Ww}} e^{Spring \ constant}_{Initial \ gap}$$

High stiffness → pull-in voltage increases

Compensated by \searrow the gap (\approx few 100 nm)

Due to membrane miniaturisation, air gaps must also to be reduced

Simulated pull-in voltages

Fabricated devices

Fabricated devices

Mechanical resonance frequency measurement

Institut de recherche

Modulation detection on RF signal due to MEMS beam motion

Beam lenght (μm)	f ₀ mesured (MHz)	f ₀ predicted (MHz)	
35	3,2 – 4	3,5	
30	4,2 – 5,6	4,8	
25	5,1 – 7,2	6,5	
20	9,2 – 11,5	10,5	

Measurements in good agreement

Mechanical resonance frequency measurement

Institut de recherche

16

Institut de recherche

Length decreases 🗲 High mechanical resonance frequency

simulated f₀ = 18.7 MHz

CENTRE NATIONAL D'ETUDES SPAT

17

RF signal amplitude modulation when MEMS component is actuated

Beam length (μm)	Mechanical resonance frequency (MHz)	Measured pull-in voltage (V)	Computed switching time (ns) @ 1.5xV _p	Measured switching time (ns) @ 1.5xV _p
15	18.9	76	26 *	<u>40</u> *
20	10.5	54	44	<u>65</u>
25	6.5	30	72	<u>75</u>
30	4.7	40	99	110
35	3.5	42	111	130

* @ 1.2xV_p

Switching time vs biasing voltage (1)

Measurements in good agreement

Switching time vs biasing voltage (2)

Switched capacitor RF performance

Impedance ratio $C_{down} / C_{up} = 5.8$

Intrinsic beam release pressure:

 $P_r = F_r / S$ (S: contact surface on lower electrode)

with $F_r = k (g0-g) + ks (g0-g) - ks (g0$

(g0:initial gap, g steady state gap and ks torque constant $k_s = \frac{\pi^4 E w t}{8l^3}$

(1) w=l/2, we lectrode = l/2 $g_0=1\mu m$, t=0,35 μm except*

l (μm)	300 *	100	80	60	40	20	10
$F_{r}^{}(\mu N)^{(1)}$	6,4	9,0	10,7	14,2	24,3	78,9	297,4
P _r (kPa)	2,3*/0,3(2)	3,6	6,7	15,8	60,8	790	11 900

*Raytheon (g₀=4µm, w=100µm, t=0,5µm)

Miniature design will be less sensible to dielectric charging issues in the electrostatic actuator

Reliability tests and used test bench

Bipolar (10Hz) stress

Continuous applied stress with periodic C(V) recording (every second): MEMS components are 98% of the time actuated down

Reliability performance (1)

Monopolar stress effect:

Reliability performance (2)

Very small recorded drift :4.5V after 23hours let down

Reliability performance (3)

Conclusion and Prospects

	Raytheon	Miniature multilayer MEMS
Length	270 - 350 µm	15 - 35 µm
Width	50 - 200 µm	5 - 25 µm
Thickness	0.5 µm	0.4 µm
Gap	3 - 5 µm	0.3 µm
Mechanical resonance frequency	55 - 150 kHz	3500 - 18000 kHz
Switching time	3 - 5 µs	50 -100ns
Capacitance ratio	100	5-6

Acknowledgement

The authors wish to acknowledge the CNES for its technical and financial support

Arnaud.pothier@xlim.fr

CENTRE NATIONAL D'ETUDES SPATIALES