

Prioritising the use of Nanomaterials in the Space Industry

Laurie Winkless¹, Alexandre Cuenat¹, Del Stark², Paul Britten³

¹National Physical Laboratory, *Teddington, UK*

² Institute of Nanotechnology, *Stirling, UK*

³ Britten Consulting Ltd, *Berkshire, UK*

Britten Consulting Limited

Tuesday 14th September, 2010 - 7th ESA Round-table on MNT for Space Applications

The Consortium

- National Physical Laboratory (NPL)
 - The UK's National Measurement Institute, with over 100 years experience in materials metrology, more recently in nanomaterials
- Institute of Nanotechnology (IoN)
 - Established in 1997, one of the world's first independent nanotechnology information providers, and now a world leader.
- Britten Consulting Itd.
 - A small consultancy with extensive experience in the space industry

..... The Technology Push team

(the **Application Pull** team are up next)

Evaluate, Quantify, Prioritise and Roadmap nanomaterials for use in future space applications

This project explicitly excluded MEMS or NEMS or any other nano-related electronics

Stage One

- Review various nanomaterials groups and their properties (ISO TC 229 WG)
- Identify potential European suppliers for each nanomaterial group
- Produce a searchable supplier database

Nanomaterials Review

- Nanoceramics
- Nanocomposites
- Nanotubes
- Nanoparticles
- Nanoclays
- Fullerenes
- Nanofibres for reinforcement
- Electronic Nanowires
- Quantum dots
- Dendrimers
- Hard-metal nano-alloys

Nanomaterials	Database										
t <u>V</u> iew <u>I</u> nsert	Format <u>R</u> ecord	is <u>T</u> ools <u>W</u> indow <u>H</u> elp									
Paste All Items	s + 🕅										
	 		-								
	♥ å 🖷 🖬	\$ ≫ ² 🖏 Ž+ X+ 🦻 🖽		<u>n a - a -</u>							_
nMenu : Form											
		Innomatorials [Databa	~~							
	LSAT		Jalabas	50							
	Clace	Particle									
	Class	- dicto									
	Туре	Any	•								
	Courthau										
	Country	Апу	Ľ								
			Show Reco	rds							
10 51	1.0										
lastQuery : Sei	ect Query					la					
Material Typ	e Nanomater	Ial Product Name Brand Name/G	Description	Manufacturing	Phase	Current Manun	Price	Further Notes	Company	Position in Su	Compa
urganic	Particle	Graphite / Diam PL-GD	(most native, ra	Controlled detoi d	commercial	Can be purchas Pric	es (5g = 3L		Plasmachem 6	Manufacturing	Plasma
organic	Particle	Graphite / Diam PL-GD-MOF	(purified from m	Controlled detoi d	commercial	Can be purchas Pric	es (1g = 11 (1 = 10		Plasmachem G	 Manufacturing 	Plasma
organic	Particle	Nanodiamonds PL-D-G	Purified 7 grade	Controlled detor of	commercial	Can be purchas Pric	es (19 – 19 (10 ml –		Plasmachern G	5 Manufacturing	Plasma
organic	Particle	Nanodiamonds NanoPure-G	Nost native 4 w	Controlled detoi d	commercial	Can be purchas Pric	es (10mi -		Plasmachern G	5 Manufacturing	Plasma
organic	Particle	Nanodiamonds PL-D-GUI	Aggiomerate-Fr	Controlled detor of	commercial	Can be purchas Pric	es (19 = 18 es (10ml =		Plasmachem C	Monufacturing	Plasma
organic	Particle	Nanodiamonds NanoPure-GUI	Agglemerate fre	Controlled detoild	commercial	Can be purchas Pric	es (10ml =		Plasmachem C	Monufacturing	Plasma
motallic com	Particle Dorticle	Aluminium Ovic PL A AIO	Algora Nanonc	Controlled detor d	commercial	Can be purchas Pric	es (10m - 1 es (10a - 1		Plasmachem 0	Monufacturing	Plasma
metallic com	o Particle	Aluminium Oxic PL-A-AlO	Al2O3 - Nanopi		commercial	Can be purchas Pric	es (10g – 1 es (10g – 3		Plasmachem C	Monufacturing	Plasma
metallic com	o Particle	Carium (NA Oxi PL CoO	CoO2 Nonono	abomical ounth (commercial	Can be purchas Pric	es (10g = 2 es (200ml -		Plasmachem (Monufacturing	Plaame
metallic com	o Particle	Indium (III) Oxid PL-InO	In2O3 - Nanopo	chemical synth (commercial	Can be purchas Pric	es (2001111 - es (10a = 1		Plasmachem (Manufacturing	Plaeme
metallic comp	o Particle	Iron (II) Oxide 1 PL EcO	Cupplied on 5%	chemical synth c	commercial	Can be purchas Pric	es (Tug – T es (700ml -		Plasmachem (Monufacturing	Plasme
metallic com	o Dorticle	Silicon Diavida DL SiOE	Supplied as 5 %	chemical synth c	commercial	Can be purchas Pric	es (200111 -		Plasmachem (Monufacturing	Disorre
metallic comp	o Dortiolo	Streptium Oxide PL-SIO	Dru nononoudo		commercial	Can be purchas Fric	e – 12 eulu oo (1a – 50	Application: Do	Plasmachem (Monufacturing	Diagram
metallic com	o Dortiolo	Tip Ovide 1 DL SeO	Shoo Nepere	abomical ounth (commercial	Can be purchas Fric	es (ry – us es (700ml -	Application. De	Plasmachem (Monufacturing	Disorre
metallic com	o Particle	Titopium Oxide PL TiO 55	Colloidal colutio	chemical synth (commorcial	Can be purchas Pric	es (200ml - ac <i>(2</i> 00ml -		Placmacher C	Monufacturing	Placm
metallic com	o Particle	Titopium Oxide PL-110-5p	TiO2 Collected	chemical synth t	sommercial	Can be purchas Pric	es (200ml - ac (100ml -		Placmachem C	Monufacturing	Place
metallic com	o Particle	Titopium Oxide PL-110-10p	TiO2 - Colloidal	chemical synth c	sommercial	Can be purchas Pric	es (Tuurfil = ac (60m! =		Plaamachem C	Monufacturing	Plaam
metallic com	o Particle	Titopium Oxide PL-110-20p	Average particle	chemical synth o	sommercial	Can be purchas Pric	es (ourni = es (Ea = 40		Plaamachem C	Monufacturing	Plaam
metallic com	o Particle	Titopium Oxide PL-110-R	Colloidal colution	chemical synth c	sommercial	Can be purchas Pric	es (og – 48 og (75m) –		Plasmachem C	Monufacturing	Plaam
metallic com	ou rranticle Destiele	Titanium Oxide PL-110-N-20p	Z-O3 News	hat plaams int	commercial	Can be purchas Pric	es (/ 5ml =		masmachem U	 ivianutacturing 	Plasma
metallic comp	o Particle	Zirconium Oxidi PL-D-1-ZrO	ZrO2 - Nanopov	riui plasma-jet (d	commercial	Carl be purchas Pric	es (5g = 2L		masmachem C	nianutacturing	Plasma
as a tallia a second	JU Marticle	Zirconium Oxia; PL-W-ZrU	ivanopowder of	criemical synth o	commercial	Carl be purchas Pric	es (5g = 15		Plasmacher U	nianutacturing	Plasma
metallic comp	D C I	7	N C						Luucono o boro L	- RECOURCE TO OTHER OF	LLUCONO (C
metallic comp metallic comp	o Particle	Zirconium Oxidi PL-D-C-ZrO	Nanopowder of	detonation synt of	commercial	Can be purchas Pric	es (5g = 55		Plasmacheni C	ivianulacturing	Plasing

National Physical Laboratory

Nanomaterials for space applications

- This task looked at the **specific requirements** of the space community
- What are the existing space materials problems?
- Can nanotechnology help?
- If so, where and how?
- How quantifiable are these improvements?
- A Round Table meeting was used
- To discuss and validate proposals with ESA engineers and scientists
- To educate the space industry on what can be expected from nanotechnology

Possible improvements

Near future

- Reduce Mass and improve strength (Structural Materials)
- Improved thermal protection systems (Thermal conductivity)
- Electromagnetic compatibility (Charging, Radiofrequency)
- Radiation Shielding
- Active Materials (Thermoelectrics)

Longer term

- Energy storage
- Coatings (barrier or re-enforcement)

These were used to define the activities in the **Nanomaterials Roadmap.....**

Roadmap development

Time-bound descriptions of specific activities to develop a technology that can improve properties for specific space applications

Activities Technology Improved properties **New applications**

Each activity has an attached General Activity Description (GAD) which defines the activity, the cost, and the duration involved

TRLs and Nano

- TRL 1 Basic principles observed and reported
- most nanomaterials-based technologies are currently at this stage
- TRL 5 Component and/or breadboard validation in relevant environment
- the predicted position for some nanotechnologies in 5 + years
- TRL 8 Actual system "Flight proven" through successful mission operations
- with appropriate R&D, nanomaterials-based technologies could be here in a 10-15 year horizon

WP 3: Nanotechnology Roadmap

- NPL O
- 5 year timescale
- 10 Action Areas
- 31 Individual Activities
 each detailed in a
 General Activities
 Description
- Aims to increase the TRL of nanomaterialsbased technologies

Nanomaterials Development Roadmap

Action	Technology Description	Priority	Present	2011		2012		2013		2014		2015		2016	
NANO 1	Polymer based nanocomposite for structural applications		TRL 2	TRL 2	TRL 2	TRL 2	TRL 3	TRL 3	TRL 4	TRL 4	TRL 4	TRL 4	TRL 5	TRL 5	TRL 5
1.1	Industrialise dispersion of carbon nanotubes in polymer matrix	1													
1.2	Improve strength and toughness CNT-CFRP materials	1										l			
13	Validation of a structural model for nanocomposites	2												1	
1.5	valuation of a structural model for handcomposites														
NANO 2	Ceramic nanocomposites for harsh environment		TRL 1	TRL 1	TRL 2	TRL 3	TRL 3	TRL 3	TRL 3	TRL 4	TRL 4				
2.1	Industrialise sintering techniques suitable for nanoceramic composites	1							-						
2.2	Improved toughness and wear resistance in nanoceramics composite	2				_	l				_				
2.3	Develop nanoceramics bonding on metal substrate	2]							
2.4	Characterize fracture mechanism in nanoceramics and delamination in ceramics coating	2			•				•						
NANO 3	Improved thermal insulation using nanomaterials	1	IRL 1	IRL 1	IRL 1	TRL 2	TRL 2	IRL 3	IRL 3	IRL 3	IRL 4	IRL 4	IRL 4	TRL 5	TRL 5
3.2	Design and produce nanocoatings for improved TPS	1													
NANO 4	Improved thermal transport in nanomaterials		TRL 1	TRL 1	TRL 1	TRL 2	TRL 2	TRL 3	TRL 3	TRL 3	TRL 4	TRL 4	TRL 4	TRL 5	TRL 5
4.1	Improved heat transport in carbon nanotubes / epoxy composites	1													
4.2	Develop anisotropic thermal transport materials	2													
NANO 5	Electro-conductive polymeric nanocomposite Demonstrate reduced ESD sensitivity in polymer		TRL 1	TRL 1	TRL 1	TRL 1	TRL 2	TRL 2	TRL 2	TRL 2	TRL 3	TRL 3	TRL 3	TRL 4	TRL 4
5.1	composite using nanofillers	2	-												
5.2	highly RF conducting CNT/CNF materials	2													
5.3	Conductive nanocoating for ESD mitigation on satellite housing	1	-												
	Nano-Thermoelectric materials for energy	3													
6.1	TE Materials Development activity	1						INLS						INL 3	
6.2	Characterisation of Efficient nanostructured thermoelectrics	1					1								
6.3	Prototyping Ultra-high efficiency thermoelectric generator	1													
NANO 7	Improve radiation / EM shielding using nanomaterials		TRL 1	TRL 1	TRL 1	TRL 2	TRL 2	TRL 2	TRL 3	TRL 3	TRL 4	TRL 4	TRL 5	TRL 5	TRL 5
7.1	Characterize space radiation effects on nanocoating	1	-										•		
7.2	nanocoating	2													T
NANO 8	Improve bonding properties of nanocoatings		TRL 1	TRL 1	TRL 1	TRL 2	TRL 2	TRL 2	TRL 3	TRL 3	TRL 4	TRL 4	TRL 5	TRL 5	TRL 5
8.1	Develop low friction surface coatings	2													
NANO 9	Improved energy storage		TRL 1	TRL 1	TRL 1	TRL 1	TRL 2	TRL 2	TRL 2	TRL 3	TRL 3	TRL 4	TRL 4	TRL 4	TRL 4
9.1	batteries	2													
9.2	nano-enhanced batteries	2	-												
9.3	based supercapacitor	3			1										1
NANO 10	Characterisation Techniques and fundamentals of nanomaterial		TRL N/A												
10.1	Characterization of buried interfaces Validated tools to measure transport across	2													
10.2	interfaces	3													
10.3	Couple theory/modelling and experiment System integration - Understand and bridge multiple	2													
10.4	length scales	1													
10.5	Test Thermal stress and characterise failure mode	1													
10.6	on nanomaterials	2													
110.7	Validated quality control methods for nanocoating	3	1	1		1		1		1		1			4

WP 3: Nanotechnology Roadmap

DURATION PRESENT **ACTION TECHNOLOGY DESCRIPTION** 2016 66 months TRI 2 TRL 5 NANO 1 Polymer based nanocomposite for structural applications NANO 2 54 months TRL 2 TRL 3 Ceramic nanocomposites for harsh environment NANO 3 48 months TRI 1 TRL 4 Improved thermal insulation using nanomaterials TRI 1 TRL 3 NANO 4 Improved thermal transport in 42 months nanomaterials TRL 1 TRL 3 54 months NANO 5 **Electro-conductive polymeric** nanocomposite 48 months TRL 1 TRL 4 NANO 6 Nano-Thermoelectric materials for energy generation TRL 4 NANO 7 TRL 1 48 months Improve radiation / EM shielding using nanomaterials NANO 8 18 months TRL 4 TRL 3 Improve bonding properties of nanocoatings NANO 9 48 months TRL 1 TRL 3 Improved energy storage TRI N/A **NANO 10 Characterisation Techniques and** 54 months TRL N/A fundamentals of nanomaterials

Examples: Nanocomposites

NANO 1: Polymer based nanocomposite for structural applications TRL 2 TRL 5

66 months

- 1.1: Industrialise dispersion of carbon nanotubes in polymer matrix
- 1.2: Improve strength and toughness of CNT-CFRP materials
- 1.3: Validation of a structural model for nanocomposites

.... Very active research area with support from industry (e.g. aviation and automotive)

NANO 4 Improved thermal transport in nanomaterials

42 months

TRL 1 TRL 3

- 4.1: Improved heat transport in carbon nanotubes / epoxy composites
- 4.2: Develop anisotropic thermal transport materials

.... Although improved thermal properties have been demonstrated, this has a much smaller research base

Thermal Nanomaterials

NANO 3 Improved thermal insulation using nanomaterials

48 months **TRL1 TRL4**

- 3.1: Develop thermal insulation nanomaterials
- 3.2: Design and produce nanocoatings for improved TPS

NANO 4 Improved thermal transport in nanomaterials

42 months **TRL1 TRL3**

•4.1: Improved heat transport in carbon nanotubes / epoxy composites

•4.2: Develop anisotropic thermal transport materials

Examples: Nanostructured materials

- Nanotechnology can improve existing properties mechanical, thermal and electrical
- It can also improve complex transport properties high efficiency thermoelectrics, photovoltaics, batteries...
- On the long-term, it may bring new functionalities, such as sensing or self-repairing properties

NANO 6 Nano-Thermoelectric materials for energy generation TRL 1 TRL 4

48 months

- 6.1: Thermoelectric Materials Development
- 6.2: Characterisation of efficient nanostructured thermoelectrics
- 6.3: Prototyping Efficient Thermoelectric Generator (TEG)

Qualification of Nanomaterials

NANO 10 Characterisation Techniques and fundamentals of nanomaterials 54 months - TRL N/A

 There are seven separate activities which come under the heading of "fundamentals of nanomaterials"

- Each of these activities will provide tools to design, develop and validate emerging nanomaterials
- These tools are key to good engineering and are currently missing

These will not further the TRL of the nanomaterials technologies, but are **vital to ensure buy-in** from the space community

Conclusions

- Database: Europe is well-placed for nanomaterial production, with over 200 different types of "off the shelf" nanomaterials produced
- Potential improvement: Four key areas identified

Structural

Thermal

Electrical

Active Materials

- We have proposed an action plan to increase the TRL of nanomaterials for specific applications
- Some classes of nanostructured materials can be flight-qualified (TRL 7 – 8) on a 10 - 15 yr timescale, including
 - Nanocomposites for structural applications
 - Nano-thermoelectric materials (for energy)
 - Thermal nanomaterials (for insulation)
- Characterisation, metrology (validation) and design tools for must be developed

Acknowledgements

Source of funding: ESTEC Contract 21669/08/NL/EM

With thanks to:

- Our partners: The IoN and Britten Consulting Ltd.
- Bill Broughton and Graham Sims (NPL), Mark Morrison (IoN), David Robinson (Psi-tran)

Britten Consulting Limited

