Miniaturized Dutch Spacecraft based on MicroSystem Technology: Status and Perspectives

J. Guo, J. Bouwmeester, E. Gill, A. Noroozi, C. Verhoeven, J. Rotteveel, J. Leijtens, R. Tijsterman, B. Sanders

Outline

- Introduction
- Previous Dutch activities on space MST
- Current Dutch developments on space MST
- Perspectives of Dutch space MST
- Conclusions

Introduction MST for Space Applications

Sensors

- Star tracker
- Sun sensor
- Magnetometer
- Micro Inertial Measurement Unit (MIMU)
- Actuators
 - Micro propulsion
 - Reaction wheel
 - Magnetorquer
- Communication devices
 - Optical
 - RF
- Others
 - Thermal control
 - Lab-on-Chip

Introduction MST R&D in NL

- The MicroNed Programme
- Objective
 - Establish a market-oriented, dynamic and sustainable public-private knowledge infrastructure on MEMS
- Organization
 - Cluster 1: Micro satellite (MISAT)
 - Cluster 2: Smart microchannel technology (SMACT)
 - Cluster 3: Microfactory (MUFAC)
 - Cluster 4: Fundamentals, modelling and design of microsystems (FUNMOD)
 - Auxiliary projects

Introduction MST R&D in Delft

- Delft Institute of Microsystems and Nanoelectronics (DIMES)
 - 87 scientific staff and 200 PhD students
 - Research fields cover: high frequency electronics, Silicon on Anything (SOA), HF-MEMS, miniaturized space systems, et.al.
- Faculty of Aerospace Engineering
 - The largest aerospace faculty in western Europe
 - Expertise on miniaturized aerospace systems, e.g. DelFly Micro, the smallest (3 grams) flying ornithopter carrying a camera in the world!

Previous Activities on Space MST MISAT Research Cluster MiSat

- Dutch national research cluster on space-based MST
- Objective
 - Advancement and dissemination of MST and fundamental knowledge for space-oriented science and technology
- Organization
 - Cluster leader: TUD-SSE
 - 4 work packages (bus, payload, architecture, distributed systems)
 - 24 projects
 - 25 partners
- Key achievements
 - Autonomous wireless sun sensor
 - Micro-propulsion
 - Delfi-C³

TWO YEARS IN ORBIT

Previous Activities on Space MST Autonomous Wireless Sun Sensor (AWSS)

General Specifications		
Sensor Type	Quadrant Sun Sensor	
Mass	80 g	
Dimensions	60x40x20 mm (lxwxh)	
Field of view	90°x90°	
Inaccuracy	~ 1°	
Data rate	1 Hz	

RF Specifications		
Frequency	915.0 MHz	
Modulation	Gaussian Frequency Shift Keying (GFSK)	
Bitrate	150 kbps (50 kbps effective due to encoding)	
Encoding	Manchester	
Protocol	Nordic Semiconductor ShockBurst (proprietary)	

Previous Activities on Space MST Micro-propulsion System

Solid cold-gas generator onboard Proba-2

- Unpressurized and leak-free
- Long storage lifetime Mass and volume efficient

Thrust test benches for micro propulsion systems

Previous Activities on Space MST Delfi-C³

- First Dutch university satellite
- Developed by students in SSE
- Piggyback launch 28th April 2008

Key Specifications		
Dimensions	100x100x300 mm ³	
Mass	2.2 kg	
ADCS	Passive magnet control	
CDHS	Decentralized, each PCB controlled by microcontroller	
EPS	Decentralized, each PCB protected by microcontroller	
ΤΤС	Uplink UHF @ 435 MHz, 600 bps FSK; Downlink VHF @ 145 MHz, 1200 bps BPSK	
Thermal	Passive	
Payload	Autonomous wireless sun sensors, thin-film solar cells, transponder	

Previous Activities on Space MST Status of Delfi-C³

Mission

- So far more than 800 days of operations
- ~ 300 participating radio amateurs
- Payload
 - Telemetry from all payload received
 - AWSS Z+ working, Z- little data, but still useful enou
 - More than 53000 accurate I-V curves of thin-film sol have been harvested
 - Radio amateur transponder decreased after some m
- Platform

TUDelft

- All 4 solar panels and 8 Rx/Tx antennas deployed
- All subsystems fully operational
- Rotation rate decrease from 5.06 °/s after ejection to 0 0.7 °/s
- Some reliability issues on CDHS
- Some data integrity issues on ground segment

Current Developments on Space MST Miniaturized Multi-aperture Star Tracker

Characteristics

- Large FOV and small baffles
- 5 apertures for high availability
- Robust against Sun/Earth blinding
- Star triangles across multiple camera heads improve accuracy
- Low system costs

General Specifications		
Success rate	> 95%	
Accuracy	0.01 ^o -0.02 ^o (three axis)	
Power consumption	< 300 mW (average)	
Mass	< 500 grams	
Dimensions	100X100X50 mm ³	
Life time	3 years (LEO)	

Current Developments on Space MST Micro Digital Sun Sensor

- Key specifications of current development
 - Accuracy 0.1° (3σ)
 - FOV ±47°X±47°
 - Albedo insensitive
 - Average power consumption < 100mW @ 5V input
 - Digital output (UART)
 - Volume 52mmX52mmX14mm excluding mounting
 - Based on APS+ chip (0,18 μm CMOS)
 - Integrated micro connector
- The future: very light (<5 grams), low cost, autonomous configurations (self powered, wireless)

Current Developments on Space MST Cold-gas Micro Propulsion System

• T³-µPS

- Thrust: 1-100mN (scalable)
- Cool gas generators to limit propellant volume
- Pressure measurement using strain gages
- Filter pore size: 5µm

Extended systems

- More cold gas generators can be added
- Very modular and flexible
- Allow distributed installation within spacecraft

	Nitrogen	Oxygen	Hydrogen
Gas output (normal l/kg)	260	200	1000
Gas release (normal liters/liters gas generator)	290	220	1000
Design output pressure range (MPa)	0.1 - 15	0.1 - 10	0.1 - 20
Gas Purity	>99%	>99%	>95%
Sensitivity to friction and impact	no	no	no

~ 200 µm

Current Developments on Space MST Micro Electric Propulsion System (1)

NC.			
0			
		2	
	13	9	

Silicon-based Micro-resistojet System			
Flow channel dimensions Value		Limitations	
Length	1 cm	No	
Height	30-50 µm	No	
Width of channel walls	50 µm	Should not be less, in order to have good wafer bonding	

Current Developments on Space MST Micro Electric Propulsion System (2)

Current Developments on Space MST Other Miniaturized Systems

- Single-chip GPS/Galileo receiver front-end
 - Detailed design was finished
 - Prototype will be available in 2011
 - One of the smallest in the world
 - Next step will be a complete single-chip GPS/Galileo
 receiver
- Micro reaction wheel
 - Maximum torque 0.09 mNm
 - Angular momentum storage 1.5.10-3 Nms
 - Total mass (bracket + 3 wheels) 104 gram
 - Peak power consumption ~400 mW

Current Developments on Space MST Nano-satellite for MST Demonstration

- Delfi-NEXT
- Successor of Delfi-C3
- MST components will be demonstrated as payloads

Current Developments on Space MNT MST-based Micro-satellite

<u>Formation for Atmospheric Science and Technology Demonstration (FAST)</u>

- The System Engineering (SE) philosophy
 - Extensively utilizes MST components as constituents of the platform
 - "Functional redundancy" + "hardware redundancy" for higher reliability
 - Allows some technical risks for low cost and short development time
 - A mixture of MST and conventional technologies
- Key specifications
 - Mass < 50 kg including payloads
 - Dimensions 700X500X500 mm³
 - Sensors: micro sun sensors, multiple-heads CMOS star tracker
 - Actuators: cold gas propulsion, micro reaction wheels
 - Others: electronical kernel, miniaturized S-band transceiver

Perspectives of Space MST The Goal

EnviSat during integration ESTEC, 14 April 2009 Outor correst Service light

Powerful individual satellite

A cluster of SoMS satellites

- Drivers of utilizing space MST
 - Mission
 - Cost
 - Mass (?)

TUDelft

Perspectives of Space MST Suggested Roadmap

- Miniaturized payload
- System-on-Chip (SoC) sensors
- Multi-functional components and structure
- Low power electric micro propulsion
- Spacecraft architect
 - System-of-MicroSys
 - Modularity
 - Low-cost and mass
- Testbeds for individual spacecraft

Infrastructure

• Testbeds for distributed system

- Distributed systems
 - Distributed onboard autonomy
 - Miniaturized inter-satellite link

Perspectives of Space MST Wireless Interface for Modularity and Integration

Conclusions

- MST offers potentials and opportunities for micro- and nano-satellites
- System-of-MicroSystem spacecraft is a supplement of "big" satellite, especially for missions requiring distributed manner
- Significant progress have been achieved through Dutch space MST activities
- Future developments will focus on architecture level
- A step-by-step strategy should be utilized to develop System-of-MicroSystem spacecraft

For further info, please contact:

Dr Jian Guo j.guo@tudelft.nl

