Introducing a Low Cost and High Performing Interoperable Satellite Platform based on Plugand-Play Technology for Modular and Reconfigurable Civilian and Military Nanosatellites Fredrik Bruhn, Per Selin and Robert Lindegren (ÅAC Microtec) Indulis Kalnins (University of Applied Sciences, Bremen) James Lyke and Benjamin Hendersson (USAF/AFRL/Space Vehicles) Josette Rosengren-Calixte and Rickard Nordenberg (FMV) #### **Outline** - Introduction International agreement in plug-andplay spacecraft - Space plug-and-play Avionics (SPA) - Improved miniature plug-and-play - -Protocol - -Hardware - New SPA avionics and power hardware - QuadSat-PnP spacecraft based on SPA #### Introduction – The "NAPA" Agreement * - Project name: Nanosatellites Plug-and-Play Architectures (NAPA) - This agreement (U.S./Sweden AFRL/FMV) seeks: - -To engage in international cooperation regarding research development test and evaluation (RDT&E), activities which may lead to the development of miniaturized aerospace systems. - -To jointly research rapidly reconfigurable nanosat technologies to conduct R&D in miniaturized avionics components. - —To investigate PnP implementation and unification at an international level to include PnP ground prototyping, qualification of new methodologies for flight worthiness of nanosat components, and R&D of a flight worthy component. ^{*}Bi-lateral Project Agreement (PA-TRDP-US-SW-AF-09-002). #### NAPA organization #### Space Plug-and-Play Avionics (SPA) In search of a standard approach for spacecraft USB interface chip #### SPA – The technologies **Electronic Datasheets** Black box components Self-organizing networks Enhanced testability Push-button toolflow #### Building spacecraft with SPA: you'll need components... ..at least one computer... ... and routers #### Connect together to form a spacecraft... ### Space Plug-and-Play Avionics (SPA) Making the Complex Simple through Architecture #### **AFRL PnPSat-1 assembly in 4 hours** - Approx: 50 x 50 x 50 cm3 - SPA-SpaceWire (SPA-S) network - Integrated harness in structural elements # Performance of components #### One Size Doesn't Fit All... #### One Size Doesn't fit All - Simple Example - Spacecraft has 200 components - "One Size Fits all" 2000 W for interfaces. No good. - Four SPA levels 65 W (5 x SPA-O, 10 x SPA-S, 30 x SPA-U, 155 x SPA-1) VAST SAVINGS!!! (~ 95%) - Nanospacecraft need better SPA-interface - -Smaller - -Less weight - -Lower power - -Lower cost Conclusion: Developing a Minimalistic SPA was a harmonization priority! #### **Minimizing Cost with Open Source** - Space Plug and Play Avionics is conceived to use to the largest extent possible open source which is well recognized and maintained. - ÅAC 's Plug and Play avionics features the following Open Source tools: - Same tool chain for regular and Fault Tolerant processors - Soft core OpenRISC 1200 32 bit processor (RTU, RTU "lite", µRTU) - Soft core PIC16F84 (nanoRTU) - GNU Project Debugger (GDB) (RTU, RTU "lite", μRTU) - GNU Compiler Collection (GCC) (RTU, RTU "lite", μRTU) - Linux Operating System (2.6) (RTU, RTU "lite") - SourceBoost C compiler (nanoRTU) (license required for full nanoRTU functionality) - Flight hardware Fault Tolerant (FT) processors derived from open source - Soft core OpenRISC 1200-FT (fault tolerant enhanced by ÅAC)* - Soft core PIC16F84-FT (fault tolerant enhanced by ÅAC)* open source ^{*} Fault tolerant (FT) versions are not provided as open source. #### Approach to Harmonized plug-and-play for nanosatellites - Select an interface - Develop a generic plug-and-play protocol around it = "mini-PnP" (MP) - -Open source - -ITAR free - Mini-PnP can be used for any system - -When converted into space-capable form = "SPA-1" #### **Interface Selection** - Examined SPI,I2C,SMBus, micro-wire, UART, RS-485, and others - SPI Good, fast, scalability problematic - <u>I2C Simple, now license-free, but lacking generic discovery /registration protocol</u> - SMBus Essentially I2C derivative, some undesirable constraints - Micro-Wire Proprietary, no hopes to make rad-hard - UART Simple and effective, but point-to-point - RS-485 Multidrop, but lacking generic discovery #### We chose I2C - Need to develop additional protocol for address resolution - -Possible to create a four-wire interface (two pins for I2C, two for power) or two-wire version by modulating data on power (Transducers Bus). | opcode | | |----------|--| | (1 byte) | | message length (2 bytes) payload (length bytes) #### MP/SPA-1 message format | Commands (opcode) | Responses (opcode) | |-------------------------------|--------------------| | Self test | Status | | Reset | Data | | Initialize | xTEDS | | Request version | xTEDS & PID | | Request xTEDS | Version | | Request data subscription | Hello | | Cancel data subscription | | | Power on | | | Power off | | | Command | | | Time at tone (SCET) | | | General call for registration | | | Update address | | | Ack | | | Not Ack | | #### Mini-PnP/SPA-1 Address resolution - All mini PnP devices have unique global identification (guid) - Implement address resolution by performing a "general call" - All devices use 0x11 as an initial address - Devices become multi-master and "walk up" address space until they find an open spot and claim it #### Mini-PnP/SPA-1 Electronic Data Sheet (xTEDS*) registration - Mechanism defined to permit the extraction of electronic datasheets from mini-PnP device - Host parses xTEDS* and registers device services for use by other devices and applications #### Mini-PnP/SPA-1 Round Robin communication Mini-PnP Implements a Command ("write"), Response ("read"), and General Call as a continuous cycle using a non-weighted round-robin, visiting all known devices and looking for new ones e.g. +5 V TΒ SDA +5 V GND SCL GND #### Mini-PnP 2 wire (MP2) / Transducers Bus - Innovation allow elimination of all wires except for power - Modulation of data on power allows I2C signals (SDA, SCL) to be superimposed on power lines - Simple transceiver allows MP2 devices to convert to MP4 and vice versa for systems and components as needed #### Three tier division – where mini-PnP/SPA-1 fits #### **ÅAC 3-tier avionics products (1)** | Feature | RTU 2.0™ | RTU "lite"™ | μRTU™ | nanoRTU™ | |-------------------------------------|---|---|---|--------------------------------------| | Processor architecture | 19-24 MHz
32 bit RISC
DSP
FPU
MMU | 19-24 MHz
32 bit RISC
DSP
FPU
MMU | 19-24 MHz
32 bit RISC
DSP | 16 MHz
PIC16 | | Radiation protection | EDAC, Parity,
Scrubber, TMR | EDAC, Parity,
Scrubber, TMR | EDAC, Parity,
Scrubber, TMR | EDAC, Parity,
TMR | | Memory [instruction words] | TBD | 12 Mword | 12 Mword | 4 kword | | PCB Dimensions [mm²] NMF facet size | 70 x 70
1 NMF | 34 x 70
½ NMF | 34 x 70
½ NMF | 34 x 34
¼ NMF | | Communication | Ethernet (1) SpaceWire (4) USB Host (2) I2C (6) CAN (1) UART (2) GPIO | Ethernet (1) USB Host (1) I2C (4) UART (2) GPIO | SpaceWire (1) USB slave (1) I2C (4) UART (2) GPIO | 12C (2)
UART TTL (1)
GPIO (12) | | Average power [W] | 3 | 1.2 | 1 | 0.25 | | AD/DA | 8 x 12 bit | 8 x 12 bit | 8 x 12 bit | 4 x 12 bit | | OS | Linux 2.6.34 | Linux 2.6.34 | Mem. Mapped | Mem. Mapped | #### **ÅAC** subsystems products (2) | Feature | DPCU-S | DPCU-U14 | DPCU-144 | GNC | MM | |-------------------------------------|--|---|--|---------------------------------|--------------------------------| | Description | Distributed
Power Control
Unit (SPA-S) | Distributed Power
Control Unit (SPA-
U) | Distributed
Power Control
Unit (SPA-1) | IMU + MGN
+
Kalman filter | Non-volatile
Mass
Memory | | SPA interface | nanoRTU | nanoRTU | nanoRTU | μRTU | μRTU | | PCB Dimensions [mm²] NMF facet size | 34 x 70
½ NMF | 34 x 34
¼ NMF | 34 x 34
¼ NMF | 34 x 70
½ NMF | 34 x 34
¼ NMF | | Radiation protection | LCL | LCL | LCL | - | EDAC | | Capacity | 4 x SPA-S i/f
3 A each | 4 x SPA-U i/f
3 A each | 4 x SPA-1 i/f
1 A each | MEMS Gyro
MEMS Accel. | Flash
16 GByte | | Power consumption [W] | ~ 0.6 | ~ 0.3 | ~ 0.3 | ~0.8 | ~ 1.2 | | Extra | 4 x SPA-S | 1 Upstream USB
port, 4
downstream | 4 redundant
SPA-1 ports | - | | #### User case (1), Plug 'n' Play architecture • Example of medium performance distributed nanosatellite architecture based on SPA components #### PnP Virtual Satellite Integration Equipment Virtual Satellite Integration over internet with TCP-IP. Simulate or link plug-and-play subsystems together for cost efficient satellite integration - VSI interface: Ethernet T-base 10/100 - Version 1 protocol support: SpaceWire, CAN, RS485, RS232 - Version 2 protocol support: SpaceWire, USB 1.1, I2C, RS422, RS232 #### **ÅAC** nanosatellite offerings QuadSat-PnP is offered together with OHB and University of Applied Sciences in Bremen. #### **QuadSat-PnP 1 spacecraft details** - Flight heritage from 10 previous flights ("RUBIN platform") - "SPAready" (rapid integration with self describing subsystems) - Modular and scalable - 4U QuadSat Formfactor, 25 x 25 x 20 cm - ~15 W continous power - Weight < 15 kg - PSLV launch in H2 2011 - Sun pointing stabilized (magnetorquers) - Intersatellite, S-band, and VHF data downlink - ÅAC miniaturized POL main payload - AFRL, NASA Ames, TNO payloads - Support from US DoD/ORS #### System design example (QuadSat-PnP) #### **Conclusions** - The SPA Plug-and-play architecture offers a new model for rapidly and flexibly building spacecraft through intelligent modularity - A joint US/Sweden program ("NAPA") has developed improvements to SPA to allow simple spacecraft components to support plug-and-play - The development of the generic minimalist protocol has been described - The mini-PnP protocol will be open source / ITAR free, but space adaptation of mini-PnP (referred to as "SPA-1") results in ITAR restrictions (when performed in the US) - AAC Microtec (Sweden) has created ITAR-free interface modules that implement mini-PnP (SPA-1), SPA-U, SPA-S in rad-tolerant form - The existing Satellite Design Model (SDM) source code is ITAR - QuadSat-PnP platform has been presented #### **Acknowledgments and Questions** - Configurable Space Microsystems Innovations & Applications Center (COSMIAC), Albuquerque, New Mexico - Utah State University/Space Dynamics Laboratory, Logan, Utah - OHB System AG, Bremen, Germany - University of Applied Sciences, Bremen, Germany - Swedish National Space Board (SNSB) For more information, see http://pnp.aacmicrotec.com