

Carbon nanotubes and silver flakes filled epoxy resin for new conductive hybrid adhesives

<u>F. Marcq</u>*, P. Demont, P. Monfraix, A. Peigney, C. Laurent, F. Courtade, T. Jamin

*marcq@cict.fr

Current solutions for electrical and thermal management

• Electrical and thermal management for electronic devices based on bare dice

silver filled epoxy adhesives

- Main issues :
 - Poor thermal conductivity (≈ 0.5 3 W/(m.K))
 - Small surface's devices because of the high rigidity of the adhesives (75 wt% Ag)

Silver vs. CNTs

- <u>Silver :</u>
 - Electrical conductivity : 6.10⁷ S/m
 - Thermal conductivity : 426 W/(m.K)
- <u>CNTs :</u>
 - Electrical conductivity : $\approx 10^5$ S/m
 - Thermal conductivity : ≈ 400 W/(m.K)
- High aspect ratio of CNTs implicates :
 - Electrical percolation at low loading
 - Mechanical reinforcement of the matrix

Comparative study between CNTs and µAg

CNTs

NSTITUT

CARNOT

CIRIMAT

> DWCNTs from Cirimat *

 $\emptyset = 2.80 \text{ nm}$ length ≈ 10 µm \rightarrow aspect ratio ≈ 3500

Commercial MWCNTs

Ø = 11.66 nm length ≈ 2 µm \rightarrow aspect ratio ≈ 170

HR-TEM characterization done at Cirimat

SEM characterization done at Cirimat

μ Ag \longrightarrow Silver flakes from Amepox

Average particle size : $2 - 3 \,\mu m$

* Flahaut et al., Gram-scale CCVD synthesis of double-walled carbon nanotubes, Chem. Commun., 2003, 1442–1443

Electrical conductivity of CNTs filled composites

NSTITUT

CARNOT

CIRIMAT

Electrical conductivity of silver flakes filled composites

Thermal conductivities

Composition	Thermal conductivity [W/(m.K)]
Pure epoxy matrix	0.20 ± 0.03
DWCNT 0.4 vol%	0.27 ± 0.04
MWCNT 0.4 vol%	0.26 ± 0.04
MWCNT 2 vol%	0.30 ± 0.04
µAg 25 vol%	0.62 ± 0.09

Measuring method 1

CNTs vs. µAg

	CNTs	μAg
Max electrical conductivity	19 S/m	74 S/m
Max thermal conductivity	0,30 W/(m.K)	0,62 W/(m.K)

CNTs : comparable to best results in literature

µAg : commercial adhesives claim even higher electrical and thermal conductivities

CNT filled adhesives have electrical and thermal conductivities too low to replace silver filled adhesives

Hybrid solutions

- Patent, literature and commercial reviews show the increasing interest for hybrid solutions such as micro + nano – fillers
- They are mainly micrometric flakes + nanopowders

CNTs have a high aspect ratio, thermal and electrical conductivities

Hybrid composites µAg + CNTs have potentialities in electrical and thermal conductivities and mechanical properties

Particles used for preliminary tests

- DWCNTs from Cirimat
- Commercial MWCNTs
- Silver flakes from Amepox

Thermal conductivities

Composition	Thermal conductivity [W/(m.K)]
Pure epoxy matrix	0.12 ± 0.02
µAg 20 vol%	0.47 ± 0.07
µAg 25 vol%	0.48 ± 0.07
DWCNT 0.4 vol% + µAg 20 vol%	0.45 ± 0.07
MWCNT 0.4 vol% + µAg 20 vol%	0.43 ± 0.07

Measuring method 2

Conclusion on hybrid composites

- Synergetic effect between MWCNTs and µAg above 15 vol% of µAg
- Electrical conductivities higher than silver filled adhesives
- No improvement in thermal conductivity

	μAg	μAg + MWCNTs
Max electrical conductivity	74 S/m	2000 S/m
Max thermal conductivity	0.48 W/(m.K)	0.43 W/(m.K)

Main conclusion

- CNTs as only filler can not replace silver flakes in adhesives for thermal and electrical management
- Hybrid filler µAg + MWCNTs show very good results in electrical conductivity :
 - High conductivity with less silver → can be a interesting way to obtain better mechanical properties from adhesives
- Thermal conductivity of hybrid composites is **comparable** to silver filled composite

Perspectives

• Interface

- Impact on electrical and thermal conductivities

- Mechanical properties : evaluate properties of the assembly of components on substrates through :
 - Thermal cycles
 - Long term storage at high temperature

Acknowledgment

- The authors would like to thank :
 - Euripides frame program through CANOPY project n°EUR -06-103
 - The french space agency CNES through contract R&T n%1582/00
 - The Polish Canopy partners from Wroclaw University and Amepox