

SENSING CAPABILITIES OF MULTIFUNCTIONAL COMPOSITE MATERIALS USING CARBON NANOTUBES

<u>Athanasios Baltopoulos</u>^{1,2}, Nick Polydorides³, Antonios Vavouliotis², Vassilis Kostopoulos², Laurent Pambaguian¹

1-Materials and Components Technology Division, European Space Agency (ESA/ESTEC), 2201AZ Noordwijk ZH, The Netherlands 2-Applied Mechanics Laboratory, Department of Mechanical Engineering and Aeronautics, University of Patras, 26500, Patras, Greece 3-Energy, Environment & Water Center, The Cyprus Institute, Nicosia 1645, Cyprus

www.esa.int

15th September 2010

European Space Agency

7th ESA Round-Table on Micro and Nano-technology for Space Applications ESA/ESTEC, Noordwijk, The Netherlands

Contents

- Multifunctionality of materials & structures
- Carbon Nanotubes (CNT): Sensing and Non Destructive Inspection(NDI)
- Description of work: Motivation for Electrical Tomography
- Electrical Tomography
 - Origin and applications
 - Forward Vs. Inverse Problem
- Experimental
 - Manufacturing of CNT-GFRP (Glass Fibre Reinforced Plastic)
 - Specimen preparation
 - Work approach
 - Experimental
 - Theoretical
- Results & Discussions
 - Forward problem and measurements
 - Measurements of damaged system
 - Conductivity maps: the estimations of the inverse solution
- Conclusions
- Future outlook
- Acknowledgments

Introduction

Multifunctionality Smart Materials and Structures

How we envision multifunctional smart structures?

- Structure with self-sensing and diagnostic capabilities
- Smart System Level 1: Solely sensory

Carbon NanoTubes (CNT) Sensing and NDI

Sensing: identify changes in or around a system through monitoring its properties

→ **Self-sensing**: to describe the material's health state through monitoring non-structural properties of it

Damage: anything that disrupts the continuity of the material and can effectively decrease the load bearing capability of the structure

- Develop a health monitoring system
- Utilizing inherent material properties
- Capable of <u>locating</u> damage /

Background

Electrical Tomography Origins and applications

- Origins & Applications of ET
 - Geology:
 - Since the '30s
 - Detection of sub-surface water and oil

2.975

- Example
- Medical:
 - Since mid-'80s
 - Monitoring Pulmonary activity
 - Examples

Electrical Tomography Forward Problem

- Given (green):
 - I : points of current input
 - $\sigma(x,y)$: conductivity distribution
- Calculate (red):
 - u<u>(x,y)</u> : voltage
 - Extract voltage on electrodes

...things seem OK up to now

Electrical Tomography Inverse Problem

- Given (green):
 - I : points of current input
 - Voltage on electrodes
- Calculate (red):
 - $\sigma(x,y)$:conductivity distribution

...not straight forward! There is some information "missing".

3

The Cyprus Institute

Application

ERT concept applied to structural materials

Manufacturing of CNT-GFRP

Dispersion of MWCNT into the resin system using Dissolver Technology

 \rightarrow Specimens cut from plate: 10cm x 10cm

Materials and processes

- MWCNTs
 - ARKEMA, France
- Ероху
 - Standard Wind Turbine
 - L1100 from R&G, Germany
- Glass fibres
 - Aerospace grade
 - Woven
 - 160gr/m2
- 0.5%wt MWCNT in resin
- 12 layers
- Hand-layup
- Vacuum Bag

Specimen preparation

Electrode positioning

- <u>20 electrodes</u> evenly distributed on the perimeter
- 1mm hole drilling
- Silver paint hole
- Conductive Epoxy
- Cure for 4hrs@55oC

Developed ERT setup

- Switching/Voltage Measurement
- 2) Current Source

1)

Control/Storage/Processing unit
Specimen under test

ERT in practise Current injection and measurement protocol

Current injection

 \rightarrow Opposite

ET Protocol

- Current: el.1; Ground: el.11
- Voltage Measurement: el.1, 2, .., 20
- Current: el.2; Ground: el.12
- Voltage Measurement: el.1, 2, .., 20
- ...
- Current: el.10; Ground: el.20
- Voltage Measurement: el.1, 2, .., 20

Measurement

 \rightarrow Absolute: all measurements with reference to the ground

Total 200 meas.p.fr. \rightarrow 160 "useful" meas.p.fr. 30 fr. \rightarrow mean values \rightarrow Absolute/ Adjacent

Introduction of damage

- Damage/discontinuity characteristics:
 - Reproducible and known
 - Size
 - Position: (X,Y)
- Damage in this study: drilling a hole
 - D=3mm
 - @(4cm, 2.2cm)
- Second damage: another hole
 - D=3mm
 - @(6cm,6cm)

3

THE CYPRUS INSTITUTE

B

Results

European Space Agency

Simulation Formation of Finite Element Model

- Complete Electrode Model
- 2D and 3D

- Equivalence?
- Computational performance?
- Final mesh characteristics
 - Linear triangular elements
 - Nodes: 4154
 - Elements: 7982
- Conductivity?
 - Experiment
 - Simulation

Experimental Conductivity determination

V-I diagram for 0.5%wt CNT-GFRP

- Controlled current input
- Record voltage
- 4 angles
 - -45/0/45/90
 - Anisotropy?
- Electrically linear (resistor)

Simulation Conductivity determination

- Model with unit conductivity
- Simulate measurements
- Linear system
- Compare to experimental
- Least square fit of conductivity
 - minimize the error between simulated and experimental curves

 $\sigma = 4.479 * 10^{-4} \text{ S/m}$

European Space Agency

Saying the same thing...differently

JoP

Sa

The Cyprus Institute

NIVERSITY OF PATRAS PPLIED MECHANICS LABORATORY

B

Simulation Vs. Experimental

Voltages input in: 2 Ground: 12

European Space Agency

-UoP

INVERSITY OF PATRAS MECHANICS LARGRATORY

> -

Ihe Cyprus Institute

P

0.25

0.15

0.3

0.25

0.2

0.15 0.1

0.05

Forward Problem *First observations*

- Mean error per electrode:
 - Vexp–Vsim

from C-scan?...

- El. 6-15: underestimated
- \rightarrow Higher experimental voltage
- \rightarrow Lower conductivity...locally
- El. 1-5, 16-20: overestimated

Inhomogeneous conductivity?

Manufacturing parameters*

Measurements of Damaged Specimen

Inverse Problem Estimating conductivity maps

European Space Agency

Inverse Problem Estimating conductivity maps

Zoom in...

Conclusions

- Online structural health monitoring system
 - Proposed
 - Developed
 - Presented
- Application
 - CNT-GFRP
 - Experimental Vs. Simulation
 - First results show agreement
 - Calibration is possible
 - Verification of manufacturing
- Outcome damage detection
 - Noticeable changes (before inversion)
 - Success in extracting estimation maps
 - Successful indication of damaged area
 - Small errors in the exact location

Future Outlook

AMIL-LOOP UNITESTY OF PATRAS APPLED MECHANICS LABORATORY CONSTITUTE

- For the setup:
 - Optimization for lower noise
 - Current injection-measurement strategy
- Can we apply it to other materials and structural configurations?
 - Carbon Fibre Reinforced Composites
 - Aluminium (?)
 - Other structural materials
 - Other structural configurations (e.g. cylinders)
 - Scale-up
 - Can we distinguish different damage modes?
 - Delamination
 - (micro-)cracking
 - Electrical Impedance Tomography

Acknowledgements

Michele Muschitiello of ESA/ESTEC laboratories for his support and ideas on the development of the ERT setup

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ

ΙΚΥ

ΙΔΡΥΜΑ ΚΡΑΤΙΚΩΝ ΥΠΟΤΡΟΦΙΩΝ STATE SCHOLARSHIPS FOUNDATION Greek State Scholarship Foundation (IKY), the Greek General Secretariat of Research and Technology and the European Space Agency – Greek Task Force through the ESA Greek Trainee Program