

Aspects of Micropackaging and System Integration of MEMS Devices

Advanced Technology Centre – Bristol, UK

Alan Pritchard, lan Sturland

ESA_MEMS_ROUND_TABLE_2010_SEPT

Summary

- MEMS for SPACE
 - A low volume specialised requirement for
 - MEMS Sensors, Actuators, Structures
 - Novel Packaging solutions required for optimum system performance
- Issues associated with niche MEMS products
 - e.g. in Aerospace and Defence industries
 - Where to get qualified devices made
 - Novel Packaging
- Manufacturing routes
 - MEMS fab and packaging for Space Environment
- Examples
 - Development of Space Gyro
 - RF MEMS
 - Aerodynamic Flow control
 - Digital Sun Tracker
- Conclusion
 - A flexible design, proof of principle and niche volume manufacture of MEMS devices for Space Applications is possible.

Development of MEMS Gyro for Space

BAE Systems involved with development Si MEMS gyros since mid 1990's

Inertial Sensor Business - originally a BAE Systems Company activity, now Atlantic Inertial Systems a Goodrich Company

AIS Atlantic Inertial Systems

BAE SYSTEMS

First to market with a high volume commercial Si MEMS gyro

- -Targeted at automotive applications with -~2 deg/sec bias drift
- -Supplied >17 million units into automotive and commercial markets

Military

100 deg/hr & gun hard – integrated into IMU
– three gyros & three accelerometers
Very good performance over temp, shock, vibration

Development of MEMS Gyro for Space Requirements

Targe	t specifications	
Configuration	 3-axis/rate mode <4W/600g unit 	MEMS is enabling
Bias stability (3σ) over 24 hours, ΔT < ±10°C	< 5 deg/h	low mass, power, cost.
Angular Random Walk	< 0.2 deg/√h	Positions MEMS gyro for:
Range	Up to 20 deg/s	 initial acquisitions anomaly detection
Output Rate	1-10 Hz	anomaly recovery
Command/Monitor I/F	RS422 async channels (SpaceWire)	safe mode applications.
Rate Outputs	RS422 async channels Analogue Channels	Modest rate range and output bandwidth compare
Simple User Interfaces		to normal MEMS applications.

Development of MEMS Gyro for Space

- •Use DRIE Si Resonant vibrating ring structure (as previous commercial and military products.
- •Small gaps, high aspect ratio
- •Small AC signals need low parasitic capacitance Glass substrate (anodically bonded Glass-Si-Glass)

 Interconnect to asic and local JFET OpAmps Through glass vias (analogue of TSV) Powder blasted Metalised
 In situ Vacuum and wafer scale packaging
 Rad Hard Electronics

BAE SYSTEMS

Development of MEMS Gyro for Space BAE SYSTEMS Silicon on glass with through glass vias

Development of MEMS Gyro for Space Wafer level Vacuum Packaging

Thin film getter, PVD into glass cavities

Ensures long vacuum life even when SA/Vol ratio non ideal

Wafer bonding – can be anodic or glass frit

BAE SYSTEMS

The MEMS Si Gyro now commercially available as SiREUS, a compact low power, low mass, 3 axis orthogonal Coarse Rate Sensor system

Opportunities for MEMS-based Flow Separation Control

BAE SYSTEMS

- Improved Performance
- Improved LO
- Reduced System Complexity/weight
- Increased Design Freedom

- Trailing Edge Control

 High lift
- Fign int
- Manoeuvre

Low level periodic forcing modulates vortex rollup

Propulsion and LO

Pressure recovery

Flow unsteadiness

External / internal lip

•Compressor stall/surge

Inlet distortion

separation

Propulsion Integration

Leading Edge Control

- Boundary layer and vortex control
- High lift
- LO manoeuvre/stability

Buffet

Technology Demonstrated With non MEMS flight control

flight control In FLAVIIR project

MEMS Flow Sensors

Designed for robustness, sensitivity, good frequency response 10 x sensitivity of conventional stick-on hot film, 30 kHz cut-off

00000000

MEMS Pulse-Jet Flow Actuator

Robust, high authority (force & displacement), small footprint and thickness.

Bulk PZT properties Bonded & structured at wafer level

MEMS Coanda jet actuation for MAV Full aero authority without moving parts

Electrostatically driven membrane Synthetic Coanda Jet forms in slot exit Vents airflow Trailing edge

Precision silicon trailing edge box structures

> 150mm MAV

RF MEMS: MEMS components for RF circuits

Advantages:

size insertion loss Q factor cost linearity

Applications RADAR Electronic warfare

MEMS switch design

RF MEMS switches

Gold tracks on nitride membranes on silicon frames (stackable) – give high Q (~3-400)

Input resonator

complete 3 section filter

packaged filter

RF MEMS Technology

Switches

Vac Packaged – high Q interface to phase delays

Phase Delays (microstrip) Fairly large structures

GaAs Chips e.g Amplifiers interface (co-planar) to microstrip over Si

High Q Filters

Membranes "conductors in vacuum" dielectric

ESA Sun Sensor on a chip project

Concept

Create a low cost standard Sun Tracker product applicable to a wide range of Satellite (and Rover?) uses.

Use APS Imaging Chips and wafer scale integration & packaging technigues

MEMS pinhole sandwich chips to be Integrated directly with sensor chip

MEMS micro lenses for increased fillfactor and some distortion correction

Silicon stand off

First MEMS lens:

Primary focussing

Silicon die with 90% of functionality

Peltier cooler (if needed!)

ESA Digital Sunsensor -Sun Sensor on Chip (SSoC)

Initial breadboard integrated device -die level packaging not wafer level

Pinhole and chip bonded

Prime contractor overall instrument design

Design & Supply of APS Imaging Chip

BAE SYSTEMS

Advanced Technology Centre

Design fabrication of Optical Chip and Wafer Level Packaging

Digital Sun Sensor Specification

Digital Sun Sensor Active Pixel Sensor Development

8" CMOS Wafer & magnified view of Active Pixel Sensor die

Digital Sun Sensor System Level Packaging

Overall packaging Packaged chip mounted on pcb, fitted in non-hermetic metal enclosure **Overall Package** 42.0 x 45.0 x 19.8 mm **Overall Mass** 65g (expected) I/O

SpaceWire/RS422

Conclusions

- Illustrated Fabrication and Packaging issues for a range of MEMS devices useful to space applications
- Despite low volume niche MEMS requirements of space
- Often complex /non standard fabrication and packaging techniques required
- It is possible to produce and package and qualify MEMS devices for space applications

