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Solid-state RF Switches

n+n+

substrate

 low cost

 high volume applications

 demand for better RF performance

Mechanical RF Switches

 very good RF performance

 expensive, bulky, heavy

 low volume applications

Radio-Frequency (RF) switch
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area ≈

 

mm2 area ≈

 

cm2

Test equipment, Military, SpaceConsumer electronics
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 very good RF performance (mechanical)

 good integration capability (solid-state)

 low cost (CMOS based fabrication)

 high and low volume applications 

Moving electrode 

(20 µm x 100 µm) 

Bottom 
electrode 

Reliability problems

Miniaturized Mechanical switches – RF MEMS

 Ohmic contact switch 

 Capacitive contact switch
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Capacitive RF MEMS switch

DOWN state – high C to ground

ground groundsignal line
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air-gap

Aluminium bottom 

electrode with oxide 

dielectric on top V

Aluminium top 
electrode

UP state – low C to ground 

ground groundsignal line
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C-V curve changes over the 

device lifetime

 C-V cure shift effect

 C-V curve narrowing effect 

Reliability problem – “dielectric charging”
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C-V curve changes over the 

device lifetime

 C-V cure shift effect

 C-V curve narrowing effect 

Reliability problem – “dielectric charging”
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Shift effect
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C-V curve changes over the 

device lifetime

 C-V cure shift effect

 C-V curve narrowing effect 
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Narrowing effect
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C-V curve changes over the 

device lifetime

 C-V cure shift effect

 C-V curve narrowing effect 

Reliability problem – “dielectric charging”

Metal

Metal

V > VPI
Charge is induced in the 

dielectric during bias
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Narrowing effect

Physics of charging is not understood
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Reliability problem – “dielectric charging”
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before voltage stress

after voltage stress (20V)

Measured C-V instability in our switches 

(narrowing effect)
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Physical model of the switch and novel charging concept
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membrane

electrode

V > VPI

oxide

Physical models: 



 

assume a single (dominant) charging mechanism



 

do not account for the contact non-uniformities
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0.0

V = 20 VV = 20 V

+4.0 

Close-Up View DOWN-state
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Physical model of the switch and novel charging concept
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+4.0 

V = 30 VV = 30 V

Close-Up View DOWN-state
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Physical model of the switch and novel charging concept
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Physical model of the switch and novel charging concept
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Physical model of the switch and novel charging concept
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Physical model of the switch and novel charging concept
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0.0

V = 20 VV = 20 V
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Close-Up View DOWN-state

Non-contact 
regions
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Physical model of the switch and novel charging concept

Contact 
regions
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Physical model of the switch and novel charging concept

Contact 
regions

Dielectric top surface

Membrane bottom surface
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non-contact 
regions

contact 
regions V > VPI Contact

regions

Non-contact
regions

V

Metal

Metal

Oxide

Air
V

Metal

Metal

Oxide
 Non-uniform bias stress conditions 

 New charging concept

 non-contact charging mechanism

 contact charging mechanism

Physical model of the switch and novel charging concept
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Experimental isolation of charging mechanisms

Methodology 
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Methodology in this work:

To isolate the non-contact

 

regions from the contact

 

regions during stress

To eliminate the influence of mechanical degradation

DOWN-state dc bias stress 

(standard method)



 

Two charging mechanisms occur simultaneously



 

Mechanical degradation of the membrane can occur

non-contact 
regions

contact 
regions
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Experimental isolation of charging mechanisms

Non-contact
 

charging mechanism
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UP-state bias stress on MEMS

 No charging due to contact

 

bias stress

 No mechanical issues during stress

Measurement procedure: 



 

VPI-

 

and VPI+

 

-

 

measurement before stress



 

Apply Up-state stress 



 

VPI-

 

and VPI+

 

-

 

measurement after stress



 

Analyze change

 

due to charging

 

-

 

VPI-

 

and VPI+

Metal

V < VPI

Metal

Air

Metal

Oxide
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Experimental isolation of charging mechanisms

Non-contact
 

charging mechanism
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Narrowing effect due to 

Non-contact bias stress

[Applied Physics Letters, 93, 094101 (2008)]
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Experimental isolation of charging mechanisms

Non-contact
 

charging mechanism
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Narrowing effect due to 

Non-contact bias stress

Similar results for the forward stress 

(also symmetrical narrowing effect)

[Applied Physics Letters, 93, 094101 (2008)]
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Experimental isolation of charging mechanisms

Non-contact
 

charging mechanism
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Experimental isolation of charging mechanisms

Non-contact
 

charging mechanism
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UP-state bias stress and Self-actuation experiments show that:

 dielectric

 

charging

 

due

 

to non-contact

 

bias

 

stress in

 

MEMS can

 

occur

 non-contact

 

bias

 

stress condition

 

can

 

cause the

 

“narrowing”

 

effect
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Experimental isolation of charging mechanisms

Contact
 

charging mechanism
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Metal

VOxide

Metal

dielectric 
current

Metal-Insulator-Metal (MIM) capacitors

 No charging due to non-contact

 

bias stress

 No mechanical issues during stress

Measurement procedure: 



 

I-V (forward and reverse)

 

-

 

measurement before stress



 

Apply dc bias stress 



 

I-V (forward and reverse)

 

-

 

measurement after stress



 

Analyze change due to charging
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Experimental isolation of charging mechanisms

Contact
 

charging mechanism
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Reverse stress
MIM capacitor

Forward stress
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Experimental isolation of charging mechanisms

Contact
 

charging mechanism
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Reverse stress
MIM capacitor

Forward stress

MEMS switch
Reverse stress Forward stress
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MEMS switch

Experimental isolation of charging mechanisms

Contact
 

and Non-contact charging mechanism
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MEMS switch

Experimental isolation of charging mechanisms

Contact
 

and Non-contact charging mechanism

Charge due to contact bias stress does not decay from the 

dielectric over 30 minutes at no bias



www.tyndall.ie17 of 18

MEMS switch

Experimental isolation of charging mechanisms

Contact
 

and Non-contact charging mechanism

Charge due to contact bias stress does not decay from the 

dielectric over 30 minutes at no bias

Charge due to non-contact bias stress decays from 

the dielectric
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Experimental isolation of charging mechanisms

Summary

18 of 18



 

New charging concept in capacitive MEMS has been described (roughness-based model):



 

Experimental evidences of charging due to non-contact

 

bias stress  (non-contact regions),



 

Experimental evidences of charging due to contact

 

bias stress (contact regions).



 

Current and Future work:



 

Physical mechanisms responsible for charging, 

non-contact charging:

 

charge accumulation at the dielectric-air interface due to Maxwell-Wagner 

mechanism (e.g. two dielectric system with different conductivities)

contact charging:

 

charge trapping in the dielectric close to top and bottom interface with metal 

electrodes,



 

Effect of radiation on charging mechanisms.
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