Successive Conduction Modes in Si₃N₄ Capacitive RF-MEMS Switches

D. Mardivirin*, S. Courrèges*, P. Blondy*,
F. Coccetti**, and R. Plana**
*XLIM CNRS Limoges
** LAAS CNRS Toulouse

Agenda

- RF MEMS reliability basics
- Techniques for charge trapping reduction
- Testing and conduction mode identification in capacitive MEMS switches
- Conclusions

RF-MEMS Reliability Basics (1)

- Two main mechanims are at play:
 - Mechanical creep
 - Charge trapping

Capacitive Switches vs Ohmic

institut de recherche

Testing sensitivity to charging

Example 1: Radant (Ohmic) MEMS Switch @ 70°C - 99% in the down state

90 Volts applied. Vp is 81 Volts.

institut de recherch

Example 2 XLIM (Ohmic), MEMS switch @ 70°C - 99% in the down state

30 Volts applied. Vp is 24 Volts.

Charging in RF MEMS Current Status

- Ohmic switches have very little sensitivity to charging
 - Testings on commercially available / optimized switches show little or no drift.
- Large contrast capacitive switches suffer from quick and large drifts because of charge trapping

For Capacitive Switches...

- Measured drifts on large contrast capacitive switches are on the order of Volts/minutes
- This is accelerated with temperature, and applied voltage
- In other words:
 - large contrast, RF-MEMS, capacitive switches do not work at present, while ohmic contact switches, are on their way to the market

• Remove the dielectric layer

Completely (XLIM)

• Remove the dielectric layer

Completely (XLIM)

• Remove the dielectric layer

• Make the dielectric layer (a bit) conductive

(MEMTRONICS)

Charge "evacuation" depends on the time In the down state. The switch has to be released Every 100 sec, roughly, 0.0005% of the time

institut de recherche

- Current strategies to reduce charge trapping in dielectric layers lead to compromises:
 - Reduced Contrast, dielectric less (Viable)
 - Current consumption (Complicated)
 - Reduced contrast and current consumption

Objectives

- Fabricate "basic" MEMS capacitive switches
- Measure the control voltage drifts, under various temperatures
- Identify charge injection mechanisms
- Then, try enhanced structures that will reduce charging

Generic Capacitive Switch

Cantilever beam, insensitive to temperature up to 80°C

Generic Capacitive Switch

Down state

Reliability Testing Procedure

• Test Sequence

Microwave Performances

• SiN switches – S parameters

Con =650 fF Coff = 80 fF

Testing Procedure

• SiN Switches – C(V) extraction

C-V measurement

Static Characteristics

• SiN Switches – C(V) curve

Charging/Discharging Sequence

SiN Switches – Typical Charging Discharging sequence

No "Cumulated time in the down state" FoM

Cantilever Switch Description

SiN Switches – Modelling

 $V_{shift} = V_a.exp(-t/t_a) + V_b.exp(-t/t_b)$

Effects of Voltage

SiN Switches – Modelling

Conduction Characteristics

• SiN Switches – Modelling

This characteristic can be either

Fowler Nordheim or Frenkel Poole but Fowler Nordheim is temperature insensitive

Model Fitting w Temperature

• SiN Switches – Modelling

Trap 'a" is insensitive to temperature : Fowler Nordheim and next Frenkel Poole

Model Fitting w Temperature

• SiN Switches – Modelling w T°

Conclusions

- Sucessive conduction mechanisms could be observed in RF-MEMS structures
 - The first phenomenon is independent of temperature
 - -Then, temperature plays a significant role
- This was found also on Al₂O₃ dielectric based switches
- Acknowledgments:

-This work has been supported by ESA

Acknowledgements

• Thales Alenia Space Toulouse

