3D INTEGRATED IMAGE SENSORS FOR SMART IMAGING SYSTEMS

PIET DE MOOR
OUTLINE

- Introduction: imec vision & roadmap
- Technology components and results:
 - Frontside illuminated imagers
 - Backside illuminated imagers
 - Hybrid backside illuminated imagers
 - 3D integrated imagers
 - Flex embedded imagers
- Conclusion
INTRODUCTION

- 2 imager roadmaps with a different approach:
 • Traditional roadmap: scaling to smaller pixels:
 - Equal chip size (or slightly smaller)
 - Higher resolution
 - Lower sensitivity/pixel backside illumination
 • IMEC Integration/packaging roadmap:
 - Backside illuminated Hybrid 3D integrated
 - Enables advanced imaging systems
IMEC VISION: ADVANCED IMAGER INTEGRATION

Integration complexity

Imager system performance

- Front side illuminated
- Backside illuminated
- Hybrid backside illuminated
- Area 3D integrated
- Flex embedded
- Peripheral 3D integrated
OUTLINE

Imager system performance

Integration complexity

- Front side illuminated
- Backside illuminated
- Hybrid backside illuminated
- Area 3D integrated
- Flex embedded
- Peripheral 3D integrated
LARGE AREA IMAGERS: STITCHING

- Stitching allows large area imagers:
 - Up to 1 imager per wafer
- Different imager sizes on one wafer demonstrated:
 - 12x12 mm2, 25x25 mm2 and 50x50 mm2
- Application: e.g. X-ray
OUTLINE

Imager system performance

Integration complexity

- Front side illuminated
- Backside illuminated
- Hybrid backside illuminated
- Area 3D integrated
- Peripheral 3D integrated
- Flex embedded
BACKSIDE ILLUMINATED IMAGERS: THINNING

- Technology:
 - Course + fine grinding
 - Critical: thinning damage, impact on devices

- Wafer handling:
 - Very thin wafers (< 100 um): use of carrier wafers and temporary wafer (de-)bonding technology

- IMEC results:
 - Thinning down to 15 um
 - Total thickness variation ~ 2 um on 200 mm wafer
BACKSIDE ILLUMINATED IMAGERS:

- **Advantage:** no dielectric/metal in light path:
 - 100% fill factor,
 - No QE loss
 - Broader wavelength range (i.e. in UV)

- **Technology:**
 - Backside thinning + damage removal:
 - Combination of grinding and Si etch
 - Backside passivation of trapping centers:
 - High dose implant
 - Laser annealing (for low T budget)
BACKSIDE ILLUMINATED IMAGERS: HIGH SENSITIVITY = HIGH QUANTUM EFFICIENCY

- World record broadband QE thanks to:

![Graph showing quantum efficiency vs. wavelength with annotations: simulation: ARC + implant, measurement, 0 nm, 10 nm dead layer thickness, Thin passivation, Thick epi. Text box: Backside illumination: 100 % FF, Dual layer ARC: < 3% reflection.]
OUTLINE

Imager system performance

Integration complexity

- front side illuminated
- backside illuminated
- hybrid backside illuminated
- area 3D integrated
- flex embedded
- peripheral 3D integrated
HYBRID BACKSIDE ILLUMINATED IMAGERS: HIGH DENSITY BUMPING

- In and CuSn microbumps:
 - Post-process at wafer level for both sides:
 - Under-bump metallization (UBM) & patterning
 - Solder deposition & patterning
 - Smallest pitch:
 - 20 μm
 - 10 μm under development

- SnCu
 - Φ 25μm bump, 40/15μm pitch/spacing
HYBRID BACKSIDE ILLUMINATED IMAGERs: HIGH DENSITY BUMPING

- Bonding:
 - Thermo-compression (high T and force)
 - Different options:
 - Flip-chip: D2D, D2W
 - Wafer bonding: W2W
 - Collective bonding: 1) populate D2W 2) W2W bonding + anneal
 - Specialty: bonding of thin dies/wafers (on carrier)
HYBRID BACKSIDE ILLUMINATED IMAGERS: HYBRID IMAGERS

- Concept:
 - Face to face bonding using microbumps
 - 1 microbump per pixel
 - Top layer:
 - (typ.) passive photodiodes
 - Choice of materials: Si (ev. high res), InGaAs, CdTe, (Al)GaN, ... for specific wavelength range detection (X-ray, UV, visible, IR, ...)
 - Bottom layer:
 - CMOS read-out circuit (ROIC)

- Advantage:
 - Different wafer material and/or technology top vs. bottom allows separate optimization

- Disadvantage:
 - Pixel pitch limited to bump pitch
HETEROGENEOUS HYBRID IMAGERS: (E)UV DETECTION USING ALGAN SCHOTTKY DIODES

- **Concept:**
 - AlGaN growth on Si
 - Photodiode process
 - Flip-chip integration on ROIC
 - Backside etch of Si
 - Till membrane of < 1 um (!)

- **Advantages vs. Si photodiodes:**
 - **Visible blind:**
 - Due to large bandgap
 - Interest for e.g. sun observation
 - **UV radiation tolerant**
 - **Demonstration of 256x256 10 um pitch imager**
HETEROGENEOUS HYBRID IMAGERS:
FAR IR DETECTION USING CRYOGENIC BIB DETECTORS

- Far IR detection (6-18 um)

Concept:
- Si:As Blocked Impurity Band (BIB) detector array operating at 4 Kelvin
- Backside illuminated through high resistivity Si
- Dedicated epi stack growth on Si
- Contact process for buried contact and individual pixel
- Flip-chip integration on cryogenic ROIC
- In microbumps (for ultra-low temperature)

Demonstration of bilinear array: 2x 88 pixels @ 30 um pitch

Application: DARWIN mission:
- Exoplanet atmosphere analysis
SI HYBRID IMAGERS FOR VISIBLE DETECTION: ‘HYBRID APS’

- Specifications:
 - 22.5 um pitch
 - Stitched design: 512x512, 1024x1024
 - \(\text{Q} \text{E} > 80\% \) from 400 – 850 nm
 - Thick epi: final thickness ~ 35 um

- ROIC designed by FillFactory/Cypress, fabricated in CMOS 0.35um foundry process:
 - **Snapshot**: synchronous pipelined shutter using 3 analog storage capacitors
 - On-chip Correlated Double Sampling (CDS)
HYBRID BACKSIDE ILLUMINATED IMAGERS: TRENCHES FOR ZERO CROSS-TALK

- Poly-Si doped trenches separating pixels:
 - Disadvantage: (limited) reduction in fill-factor
 - Advantage: no cross-talk
- Demonstrated using laser point source

Doped poly-Si filled trenches >1e19 at/cm³
22.5 µm
p
Built-in electric fields

Doped poly-Si filled trenches

pixel
substrate contact

Acc. V 5.00 kV 9.9
Spot Magn 8831x
Det WD E
Bar
5 µm

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1
2
3
S1
S2
S3

© IMEC 2010
Piet De Moor
OUTLINE

Imager system performance vs. Integration complexity

- Front side illuminated
- Backside illuminated
- Hybrid backside illuminated
- Area 3D integrated
- Flex embedded
- Peripheral 3D integrated
3D INTEGRATED IMAGER TECHNOLOGY: INTRODUCTION

- create vertical interconnect using combination of
 - Through-Si vias (TSVs)
 - High density microbumping

Process sequence:
1) Process TSVs and UBM/microbumps – on wafer level
2) Assembly – D2D/D2W/W2W

2 options for TSV process:
- After finishing CMOS processing = post-processing
- During CMOS process
3D INTEGRATED IMAGER TECHNOLOGY: 3D-WAFTER LEVEL PACKAGING

- 3D-Wafer level packaging (3D-WLP) = post-processed TSVs

- Approach =
 1) Thinning
 2) TSV processing from the back

- Dimensions:
 - Minimal pitch = 40 µm
 - Via diameter ~ 25 µm
 - Si thickness ~ 50 µm

- Via resistance < 20mΩ

- Low Capacitance: ~ 20 fF

- Design considerations:
 - Landing pad to be designed at lowest metal
 - Area consumption by TSV
3D INTEGRATED IMAGER TECHNOLOGY: 3D STACKED IC (3D-SIC)

- 3D-Wafer level packaging = process TSVs as a part of the CMOS process:
 - At the level of the 1st metallization in the BEOL
 - Advantage: use of area above TSV

- Approach =
 - 1) CMOS process (incl. TSV)
 - 2) Thinning, TSV exposure, bonding

- Dimensions:
 - Minimal pitch = 10 µm
 - Via diameter ~ 3-5 µm
 - Si thickness ~ 15 µm
 - Via resistance ~ 20 mΩ
 - Via Capacitance: 40 fF (depletion)

- Design considerations:
 - Area consumption by TSV
3D INTEGRATED IMAGER TECHNOLOGY: 3D STACKED IC (3D-SIC) PROCESS FLOW

Via processing

Extreme thinning (on carrier)

Mixed polymer and Cu-Cu thermocompression bonding
3D INTEGRATED IMAGER TECHNOLOGY: REDISTRIBUTION LAYER

- Redistribution layer options:
 - Part of CMOS
 - At backside of (e.g.) TSV wafer
 - using e.g. Cu/dielectric
PERIPHERAL 3D INTEGRATED IMAGERS

- Advanced packaging technology for front side illuminated imagers:
 - From traditional lateral wire bonding to TSV per bond pad + bump ball bonding
 - = 3D integration at package level using Through Si Vias (TSVs)

- Advantages:
 - Smaller footprint
 - Reduced capacitance \rightarrow\text{faster/low power interconnect}
 - Buttability with minimal area loss

- Applications:
 - Consumer imagers
 - Large area tiled imagers
 - Endoscopes
PERIPHERAL 3D INTEGRATED IMAGERS: LARGE AREA X-RAY DETECTION

- **Application**: large area direct X-ray detection by **tiling**

- **Concept**:
 - **Vertical interconnect** architecture using
 - TSV at bondpad level in CMOS ROIC chip
 - Redistribution layer at backside
 - **Edgeless detectors** using dicing by grinding and sidewall passivation

- **Status**:
 - Standalone hybrid X-ray detectors realized
 - Demonstrator fabrication ongoing
 - System hardware ready
AREA 3D INTEGRATED IMAGERS

▪ Concept:
 ▪ Stacking of multiple (>2) layers: detection layer + ROIC layers
 - Example: passive photodetector layer + analog ROIC + digital image processor
 ▪ Using high density bumping + area redistributed TSVs

▪ Advantages:
 ▪ General: optimization of (CMOS) technology for different layers
 ▪ Imager system:
 - Vertical parallel readout chain allows high speed
 - Triple (n-fold) area per pixel allows complex electronics per pixel
 - Low capacitance interconnect to digital image processor allows high speed and low power

▪ Challenge: system architecture:
 ▪ Optimal split in different layers of functionality and technology
AREA 3D INTEGRATED IMAGERS

- Status: system architecture study of an imaging system on a chip-stack
 - Integration of micro-optics layer:
 - Ultra wide field of view
 - Filters for hyperspectral imaging
 - Shared pixels = multiple pixels per bump
 - Smart analog/digital read-out:
 - Ultra high dynamic range
 - ADC per group of pixels
 - Variable resolution (active binning)
 - Smart digital processing:
 - 2D distributed group of processors
 - Face recognition

- Next step: demonstrator design and manufacturing
OUTLINE

Imager system performance

Integration complexity

front side illuminated
backside illuminated
hybrid backside illuminated
area 3D integrated
flex embedded
peripheral 3D integrated

imec
FLEX EMBEDDED IMAGERS

- Concept: embedding of a thinned imager in a flexible foil

- Status:
 - On-the-body demonstrator
 - Imager embedding ongoing

- Applications:
 - Non planar (bended) focal plane camera:
 - Low cost & optimized lens design
 - On/in the body radiation monitoring for cancer therapy
 - Tracking detectors for high energy particles
CONCLUSIONS

- Advanced 3D integration technology enables smart imagers with high performance
- The best integration scheme is application dependent
- imec has capabilities in:
 - Backside thinning and passivation
 - High density bumps
 - Through Si vias
 - Advanced assembly
- imec can offer development on demand up to small volume production (CMORE)