
High-Performance, High Reliability Subsystems for Nanosatellites

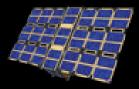
J. Rotteveel – ISIS F. Brühn – ÅAC Microtek

Company Overview

- Spin-off of Delfi-C3 nanosatellite project of TU Delft
- Founded January 06, 2006
- Office locations:
 - Delft, near Delft University of Technology Campus
 - Noordwijk, in the European Space Incubator at ESTEC
- Current team: 20+ engineers, plus management, support
- Fully owned by the management team:

Jeroen Rotteveel Managing Director

Abe Bonnema Marketing Director


Wouter Jan Ubbels Technical Director

Eddie van Breukelen Financial Director

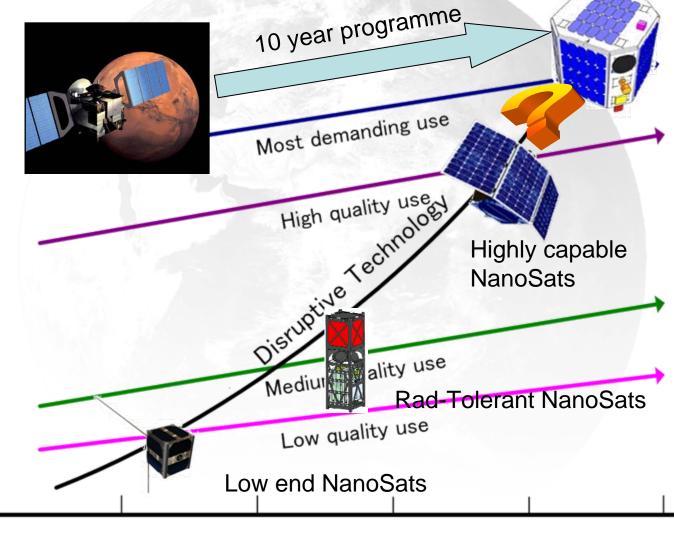
Company Activities

End-to-end small satellite solutions:
Integrated space applications & services
Nanosatellite missions and platforms
Launch services for auxiliary payloads
Ground stations and mission operations
Innovative small systems and products

Nanosatellites

category	mass range (kg)
large satellite	> 1,000
medium-sized satellite	500-1,000
minisatellite	100-500
microsatellite	10-100
nanosatellite	1-10
picosatellite	0.1-1
femtosatellite	< 0.1

NanoSats as Disruptive Technology


Start simple

- Low pointing
- Low complexity
- Fast time to market

Design to Cost

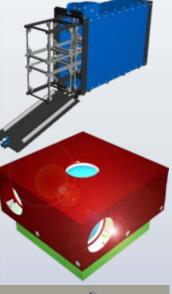
-Focused Missions -New risk approach -Low entry barrier Performance

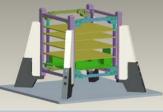
Stepwise Improvements ~3 year lifecycles -Formation Flying -Better Pointing -Lifetime (rad hard) -Reliability

The NanoSat Challenge

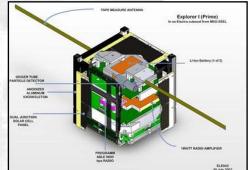
Pros

- Lower absolute costs
 (€/ mission)
- Short development time
- Reduced complexity
- Low launch cost
- Lightweight, compact spacecraft

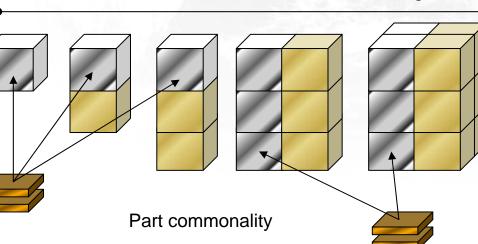

Cons


- Higher specific cost
 (€ / kByte useful data)
- Short Mission Lifetime
- Reduced capability
- Piggy-back constraints
- Limited onboard resources

MNT can exploit these Pros and potentially overcome the Cons of Nanosats



Design Aspects


- Small Teams
- Short Mission Lifecycles
- Modular systems
- Standard avionics modules and interfaces
- Mission Specific Avionics and systems
- Plug and Play Payload capability
- Off-the-shelf systems

1 kg, 1W

15 kg, 40W

Ground Breaking

Science

Technology

Demonstration

Highly Profitable

Business

The CubeSat Challenge

10x10x10 cm

1.0 kg

Piggyback launch

<2 W OAP

< 500 kByte / day

<200,000 Euro

<24 months

Maintaining Strategic Capabilities


Education and Training

First Steps In Space

Securing the Safety of Citizens

CubeSats grow in size...

3-Unit

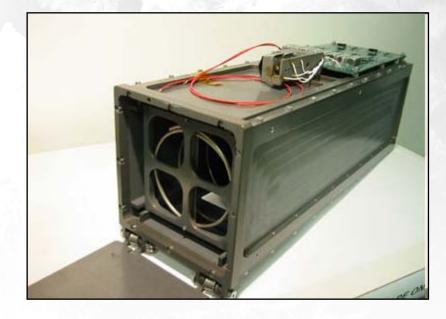
1-Unit

4-Unit

1.5-Unit

5-Unit

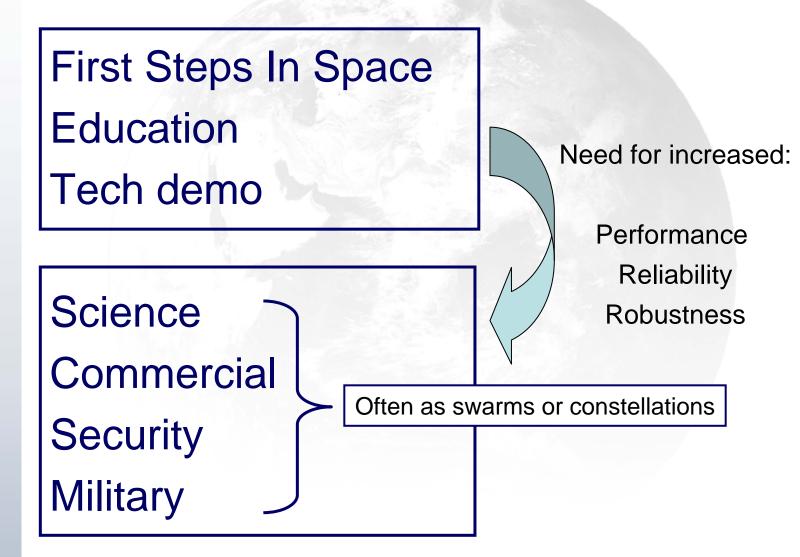
6-Pack



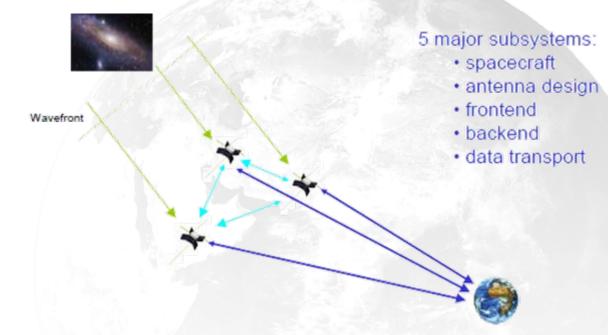
...And Standards Evolve...

- Initial CubeSat Design Specification (CalPoly / P-POD)
 - -1-Unit = 1.0 kg max
 - 3-Unit = 3.0 kg max
- Current CubeSat Design Specification (CalPoly / P-POD)
 - 1-Unit = 1.33 kg max
 - 3-Unit = 4.0 kg max
- ISIS CubeSat Deployers
 - 1-Unit = 2.0 kg max
 - 3-Unit = 6.0 kg max
 - Additional envelope for Apertures and Deployable arrays

But ultimately size is limited



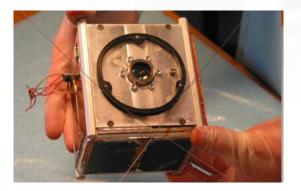
CubeSat NanoSats are limited by availability of standard deployment canisters


Application Evolution

Advanced Application - OLFAR

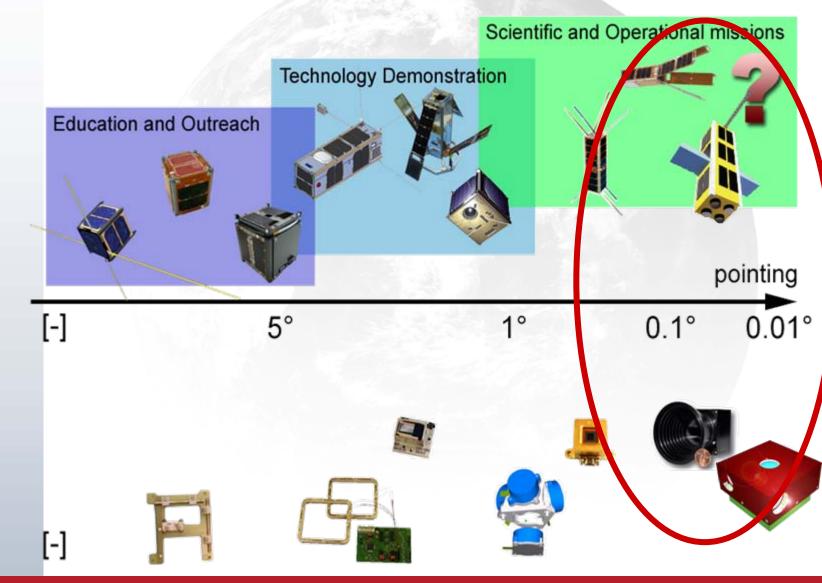
- OLFAR is a new concept of a low frequency radio telescope in space using small satellites.
- Correlation must be done in space.
- Distributed processing with centralized downlink transmission is the preferable option.
- Inter satellite link is the communication challenge.

Constellation and Swarm aspects


- In orbit delivery and control
 - Deployment systems
 - Propulsion
 - De-orbit systems
- Improved Robustness of the system
 - Autonomy
 - Redundancy schemes
 - In-orbit spares
- Improved communication
 - Intersatellite links
 - Ground networks

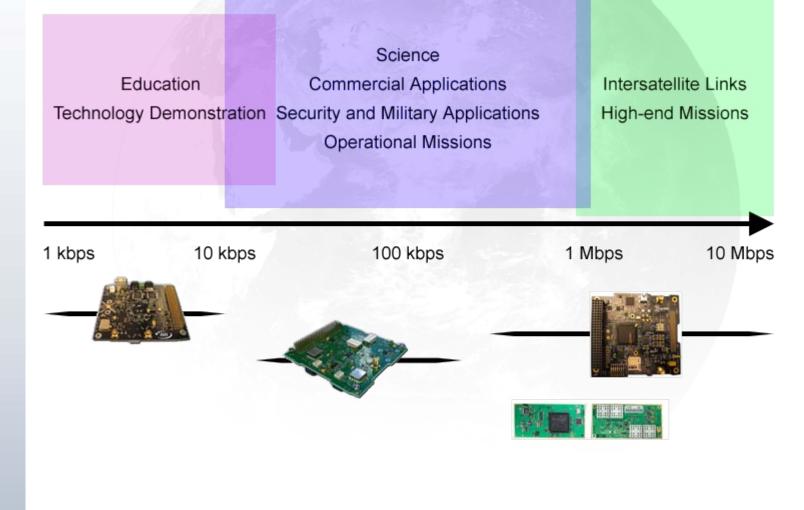
NanoSat propulsion Systems

MEMS Valves Micro-Machined Thrusters Micrometer thin solar sails



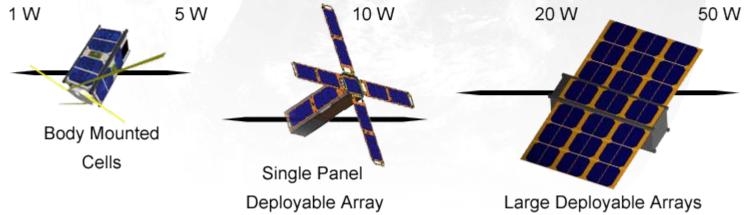
Spacecraft level aspects

- Need for better control of the spacecraft
 - Attitude Determination
 - Attitude Control and Pointing
 - Formation Flying
 - (de-)Orbit Control
- Improved Reliability of systems
 - Radiation Tolerance
 - Improved QA / PA in the system design
 - Redundancy schemes
- Improved onboard resources
 - Improved onboard power (up to 50W arrays)
 - Improved data processing capabilities
 - Improved data downlink (from 10 kbps to 10 or 100 Mbps



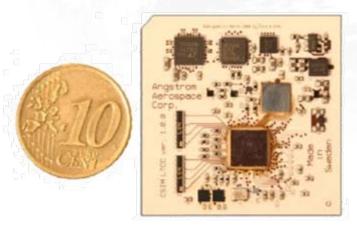
9/20/2010




Telecommunication Trends

Onboard Power Generation

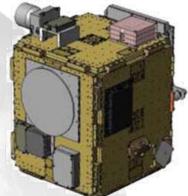
On a subsystem level

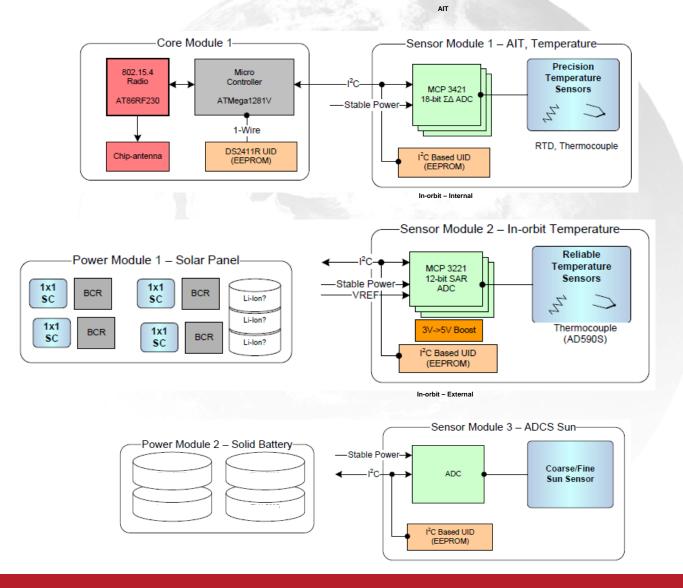

- Miniaturization
 - Microelectronics & MEMS
 - Improved performance per mW / cm3
 - Integration of many subsystems into single boards
- Interface Standardization and modularization
 - Allows for gradual improvement
 - Drop-in replacement
 - Self discovery and configuration
- Improving reliability and robustness
 - Latch-up protection
 - Radiation tolerance
 - Better testing of parts and components

Miniaturization and integration

Plans for single board with:

- Remote Terminal Units as OBCs
- Miniaturized SDR radios
- Power conversion
- Attitude determination





Standardization and Interfacing

- Plug-n-play Capability
 - Self configuration
 - Self discovery
- Allows for more focus
 on mission design and instrument design
- USAFs PnP-Sat and CubeFlow
- ESA's Standard Modular Microsystems
 Interface project
- Evolving CubeSat Standards
- New data buses

Reliability Improvement

- Efforts going on to improve radiation tolerance for nanosats
 - ESA's NEOMEX initiative
 - Technology programme to develop highly capable, miniaturized satellite
 - Rad Tolerant
 - High performance
 - ESA qualified nanosatellite
 - USU's SDL Pearl CubeSat
 - Rad tolerant

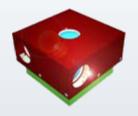
- Rad Tolerant OBC modules
 - Approved processes and components

Conclusions

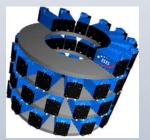
- NanoSats have come a long way in the past decade
- More 'mature' applications are driving performance and reliability of nanosatellite space systems, spacecraft and subsystems
- MNT and highly integrated subsystems can satisfy this demand.

Thank you for your attention!

Questions?

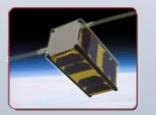



ISIS - Innovative Solutions In Space BV


Molengraaffsingel 12-14 2629 JD, Delft The Netherlands +31 15 256 9018 <u>info@isispace.nl</u> www.isispace.nl

Current Activities

- Ongoing Product Developments:
 - Communication Systems (UHF, VHF, S-Band)
 - ISIPOD Deployer systems in various form factors (e.g. 6-Pack)
 - Test & Ground Support Equipment Kits
- Ongoing R&D Projects:
 - Track & Trace payloads (with various Dutch partners)
 - Miniaturized Star trackers (with TNO/cosine/Bradford/SystematIC)
 - Deployable nanosatellite Solar Arrays (with Dutch Space)
 - Modular Payload Deck Elements (with Stork/Fokker/Mecon)
 - Wireless Sensor Networks (with TUD / Aerospace Wireless)
 - NEOMEX SMMI (With international partners)



Current Activities

- **Ongoing Missions & Platforms:**
 - Triton-1 Tech Demo Mission (with SystematIC / NLR)
 - Triton-2 AIS Demo Mission (with ClydeSpace / GomSpace)
 - FUNcube Platform and MAIV (for AMSAT UK)
 - De-Orbit Sail Demo Mission (EU project with SSC, DLR, ASTRIUM, Universities in Greece, Turkey, South Africa)
 - Delfi-n3Xt (Payload Partner of TU Delft)
 - 2U environmental monitoring mission (for Indian University)