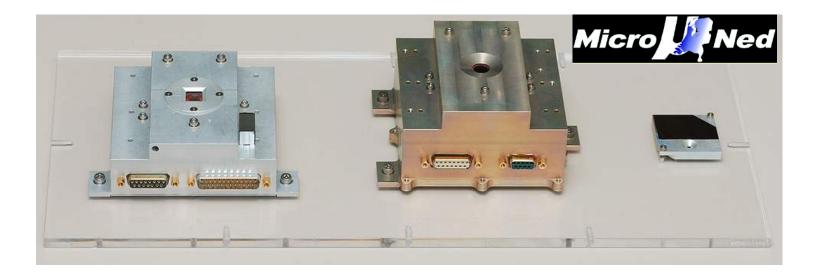
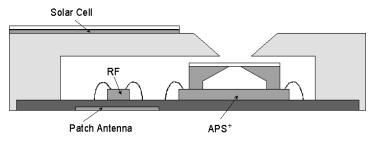
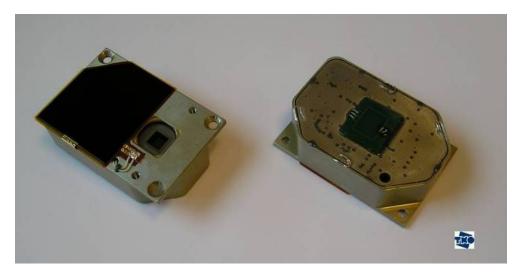

For the mini-DSS it's the system level that counts

TNO Innovation for life



ESA MNT workshop


TNO's current portfolio


Start of the miniaturisation within Microned

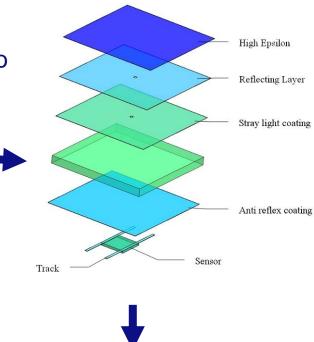
- Autonomous micro-digital sunsensor
 - Autonomous power
 - •Wireless link
 - MEMS based

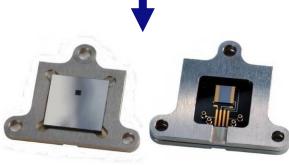
Deliverable 1 Autonomous wireless sunsensor

Flying

Autonomous Wireless sunsensor flying on Delfi-C3 Cubesat from TUD

- •Weight saving
- •Ease of accommodation
- Remote monitoring
- •Multiple receivers possible

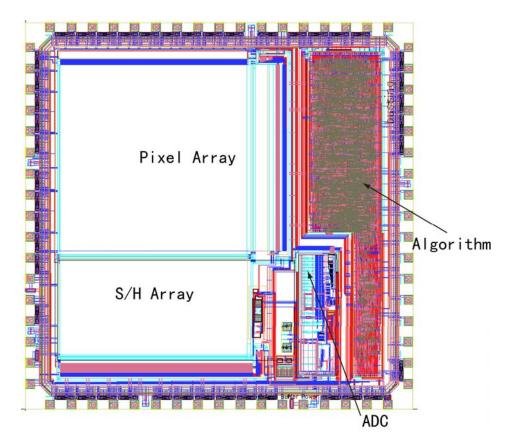




Deliverable 2 IMMERSED Technology Demonstrator

Ready and working

- Motivation: Demonstration of mastery of immersed technology – stepping stone to miniature autonomous SS
- Combination of functionalities
 - Carrier for mask and detector
 - Spacer
 - Radiation shield
- Wafer scale manufacturing



Deliverable 3 APS+ chip

- Single chip sunsensor
- Optimised for low power
- TSMC 0,18 micron process
- Last spin-out 5th May
- Chips received 23th of june
- First results today

Further steps

- Market survey
 - autonomous wireless two bridges to far
 - Add autonomous powering afterwards
 - Wireless nice research topic but not mature enough (yet)
 - No need for the smallest possible sunsensor (yet)

Low cost of prime importance Image: Ima

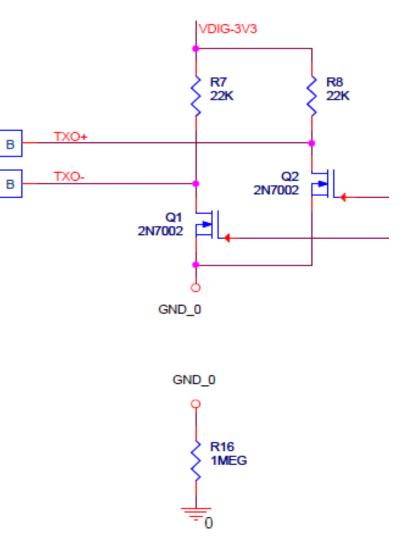
Future developments : Miniaturisation NSO ASSET program

- Mini-DSS
- Aluminium housing
- Hermetic
- Automated assembly
- Low power
- ± 47 degrees FOV
- 0,1 degree accuracy goal
- 52*51*14 mm³
- <100mW (est.55mW)</p>

N.B. not autonomous, not wireless Noise on position measurement measured on APS chip 0.004 degrees

Low power and ±47 degrees field of view

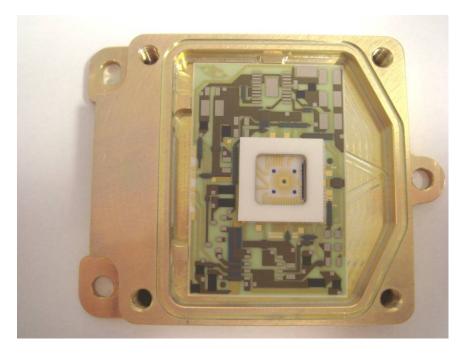
- APS+ power optimised
 - 21.34 mW acquisition mode measured
 - 21.40 mW tracking mode measured
- Support circuits optimised for low power
- DARE without DARE library
- Low power digital interface circuit
- Majority of power consumption in the linear regulators
- ±47 degrees field of view allows solar power supply without large solar cell.

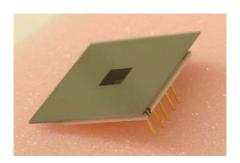


Delft University of Technology

Weak pull up to save power on the interface

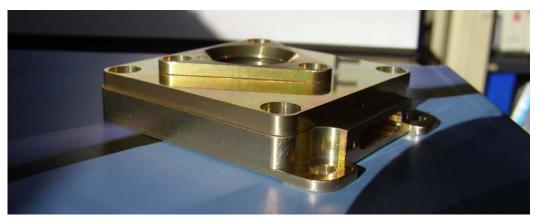
- 3.3V digital output
- Enough pull up to give signal on an oscilloscope or short lines
- Higher current capability with external pull-up for long lines
- Higher current will not give much extra heat in the sensor.
- Sensor floating with respect to housing to allow for SPDG
- 1Meg bleed resistor to avoid charging





Automated assembly

- All Al2O3 sensor core
- Directly referred to reference holes of package
- Allows for simple and cost effective manufacturing
- Vision based pick and place for highest non calibrated accuracy



Aluminium housing

- Semi hermetic through integrated seals
- Integrated connector with single row micro-D pins
 - Bondable pins space qualified for spacewire connectors
 - Grommet material space qualified
 - Less parts
- Non magnetic
- Allows for automated assembly through pick and place
- Easier to machine and therefore more cost effectively produced

Comparison DSS and mini-DSS

	DSS	Mini-DSS	Ratio	remarks
Size	132*110*62mm ³ 943,8 cm ³	69*52*14mm ³ 50.2 cm ³	18.8	
Weight	475 gram	<50 40	9.5 11.9	
Power	1.4 W	100mW (55 mW)	14 25	DSS at 28V unregulated Mini-DSS @5V
Accuracy	0.02° 3σ	0.1° 3σ	0.2 1	Measured noise mini-DSS 0.004°

Ning Xie

Delft University of Technology

harvest imaging

Albert Theuwissen

Gerhard Schmidt

Josef Denkinger

• Mickael Deruette

Christophe Tisserant

• Coen van Leijsen

Murat Durkut

Johan Leijtens

Henk Hakkesteegt

Henk Jansen

Jacob Jan van der Velden Noordwijk 2010-09-13

Conclusions

- MEMS based intelligent sensors offer advantages at systems level but a small sensor doesn't automatically make a small system
- High reliability low power and high rigidity systems can be used for many missions and are bound to change the procurement landscape.
- The mini-DSS is an example of a system optimised sensor which has led to a system which is significantly larger then possible.

What we hope to have proven is:

For small sensors, it's the system level that counts

Thank you for your attention.

19 ESA MNT workshop

For further information Johan Leijtens +31 15 269 2191 Johan.leijtens@tno.nl

