

PRESENS

Pressure Sensor Technology

A differential pressure sensor for space with a silicon MEMS element 7th ESA Round Table on MNT for Space Applications

Authors: Lars Evensen, Peder Staubo, Bjørn Erik Seeberg, Contact: Lars.Evensen@presens.com

> www.presens.com Date: 15.08.2010

Background and motivation

Presens is a fabless MEMS company

- Complete control of design, test and performance
- Subcontract processing
- Our proprietary tubular silicon MEMS element is specially designed for high pressure applications
 - Large volume of installations subsea
 - A new sensor for space applications are in development
 - Two contracts with ESA
- Have seen a growing interest in a new high accuracy differential pressure sensor for flow applications
 - Both subsea and space

Background

Mechanical pressure sensors are differential

- The tubular element is not suitable for differential pressure
- Have made new high accuracy element based on a diaphragm design
- Differential pressure sensors are used for flow measurement or for tank level measurement
 - The sensor measures a differential pressure created by media flow across a restriction. The flow is related to the differential pressure.

Typical requirements both for space and subsea

- Small dp range
- High static pressure
- High resolution
- High accuracy
- Long term stability
- Long term reliability
 - Static pressure can become the differential pressure

Space vs. Subsea

Subsea

Advanced electronics

- 24 bit ADC
- Microcontroller

Advanced bus interface

- CANopen
- RS485
- No weight constraint
- No size constraint
- No power constraint
- Operational environment
 - Unlimited cooling
 - External pressure up to 700 bar

Space

Analogue electronics

- Operational amplifiers
- Radiation hard

Simple interface

- 0 to 5 V analogue signal
- 12 bit ADC
- Light weight
- Small size
- Low power consumption
- Operational environment
 - Restricted cooling
 - Vacuum of space
 - Almost zero gravity
 - Ionizing radiation

Truly different!

E E E N 5 Application specifications

dp-pressure ranges

- 0 to 300 mbar
- 0 to 1500 mbar

dp-pressure resolution

Sub millibar resolution is required to achieve the accuracy of the application

Static pressure and maximum pressure Two pressure ranges are of interest

- 25 bar 100 bar
- 300 bar 1200 bar
- Consequently a system to protect the element against extreme pressures are required

Temperature range

- -40 °C to +85 °C
- -60 °C to +85 °C

Truly different!

\bigcirc

E N 5 Design constraints

High resolution

Requires high sensitivity of the sensing element

High accuracy

- Compensation for temperature and static pressure
- Long term stability of the element and the system

Long term stability

- Isolated electrical bridge
- Minimize hysteresis effects
- Control of mounting stress
- Separation diaphragms between media and sensing element
- Long term stability and reliability of the dp-pressure seal
- Shall tolerate high static pressures
 - Requires mechanical overpressure protection of sensing element

Radiation tolerant

- Radiation improved design and process for the element
- Radiation hard analogue electronics

Truly different!

Design of the MEMS element

High sensitivity for the pressure signal

Optimize diaphragm thickness and size

Rely on proven bridge design

 Wheatstone bridge is designed exactly like we use it on the high pressure elements

Isolate the Wheatstone bridge from electrical changes

Use buried piezo resistors

Prevent stress from the metal and oxide to affect the diaphragm

Route metal lines outside the diaphragm

Decouple mounting stress from the diaphragm

 Decouple thermal and mechanical stress from the diaphragm

- Designed for extension to very high pressures
- Compression effects are decoupled from the diaphragm
- Thermal stress is decoupled from the diaphragm,

Element features

Diaphragm decoupled from mechanical stress

- Decoupled from the supporting frame
- Decoupled from the assembly stress
- Tubular pressure port
 - Reduces effects of mounting stress
- Hermetic sealing using gold to gold bonding
 - Long term reliability without risking leaks through the seal

-Truly different!

Δp -element chip outline

ssure Sensor Technolog

Chip Size

- Length: 4 mm (3 and 6 mm)
- Width: 1.7 mm

Membrane size

- W&L:1.04 mm (0.34, 0.54, 0.78 mm)
- Thickness: 20 μm

Wheatstone bridge configuration

- X-ducer ($R_{b} \approx 1.5 \text{ k}\Omega$)
- X-ducer with hole ($\approx 4 \text{ k}\Omega$)

Decoupling of mechanical stress

- Mechanical decoupling of diaphragm
- Beam length
- Pressure inlet port with tube design
 - Ø_{hole} = 0.25 mm
 - Ø_{inner} = 0.6 mm
 - Ø_{outer} = 1.2 mm
- Die attach
 - Gold ring for thermocompression bonding

Truly different!

S E N S Processing

The MEMS wafer is a complex three layer structure

Three basic steps in the processing

- Building the MEMS wafer with mechanical shapes and inner structure
- Processing electrical wafer
 - Buried piezo resistors
 - Thermal oxide and additional deposited passivation
- Shaping the exterior of the MEMS element
 - Decouples stresses from the diaphragm
 - Prepare for die attach

Processed wafers finished and delivered

- Processing is possible
- Yield is acceptable

Truly different!

Process results

Scanning Electron Microscope pictures showing the sensing element

Process data

sure Sensor Technology

Sheet resistances

- Piezo resistors: 372 Ω/square
- Surface conductor: 33 Ω/square
- Field doping: 28 Ω/square

Element data

- Bridge resistance
 - X-ducer: 1.6 k Ω
 - X-ducer hole: 4.1 $k\Omega$
- Leakage current
 - Typical 0.2 nA
- Breakdown voltage
 - Typical 22 V

Pressure Sensor Technology

White light interferometric image showing the diaphragm deflection before opening the pressure port. Deflection equal to $1.2 \ \mu m$.

White light interferometric image showing the diaphragm deflection after opening the pressure port. Deflection equal to $0.05 \ \mu m$.

-Trul

First pressure testing

• Mounting

- Elements glued to PCB
- Wires bonded between element and PCB

Test jig

- PCB mounted within steel pressure chamber
- Temperature control by mass
- Glass feed through for electrical connection

Pressure application

- Applied pressure in 10 or 100 mbar steps
- Applied pressures between 10 mbar and 18 bar

Set-up and equipment

- Temperature control with water bath
 - Neslab 17
- Pressure applied with precision controller
 - Druck DPI515
- Pressure measured with
 - GE Druck DPI-515
 - 3 V bias voltage applied with

- Agilent voltage source
 Bridge resistance and voltage measured with
 - Agilent 34401A 6 ½ Digital Multimeter
 - Agilent 34970 Data Acquisition/Switch unit

Test results

Signal Offset

Pressure Sensor Technology

- Values in the range -2 to 2 mV/V
- Small and varying temperature effect
- Negative temperature coefficient

Sensitivity

- Sensitivity varies with diaphragm size
- Typical values are much lower than simulated
- Positive temperature coefficient

Nonlinearity

Intrinsic nonlinearity better than 1.2%

Burst pressure

 Burst pressure for the large diaphragm is > 18 bar

Design	Diaphragm	Sensitivity [mV/Vbar]	Nominal sensitivity	Offset [mV/V]	Nonlin [%]	Rb [Ω]
301	1060 µm	6,7	20	1,5	1,1%	1700
305	780 µm	3,1	10	-55,8	1,2	1650
307	540 µm	1,3	5	1,28	1,4%	1640
309	340 µm	0,38	2	0,68	3,2%	1661

Truly different!

Sensor assembly

Element mounted directly to the end of a tube

Glassed-in tube

sure Sensor Technology

- Pressure applied trough the tube
- Electrical isolation
- Gold to gold thermocompression bonding At 400 °C
 - Die shear force of 1.1 kP
 - Not leak proof

Alternatives

- Tried epoxy adhesive
- Considered Gold-Tin eutectic solder
- Considered Lead-Tin eutectic solder

Requirements

- Leak proof: 2.5x10⁻⁸ mbarL/min
- Mechanical strength: > 1.2 kg

Bulhead for test purposes

Prototype bulk head with dp and absolute element

R E S E N S Pressure Sensor Technology Pressure testing

Differential pressure with static pressures

A pair of DH Budenberg dead weight testers

- Can adjust line pressures from 1 bar to 1723 bar
- Can apply dp-pressures up to the line pressure
 - Minimum resolution is 0.1 mbar

Truly different!

System specifications

Design goals

- Sub-mbar resolution
- High accuracy, better than 0.1 %
- Differential pressure range 0 to 300 mbar

Mechanical

- Low mass: 185 g (except oil filling and cables)
- All parts made in titanium grade 5
- Corrosive operation with separation diaphragms

Presens patented overpressure protection system

Protects the element from high static pressures without reducing sensitivity or accuracy

S E N 5 Special features

Electronics

- Analogue radiation hard
- Chopping amplifier to compensate for offset and sensitivity
- Reads pressure and temperature signal
- Look-up table for compensation of temperature and line pressure

Power consumption

- Constant bias for the sensing element
- Current limited start-up
- Maximum current 16 mA

Interface

- Flying leads, shielded twisted pairs
 - Power, pressure and temperature
- 0 V to 5 V (0.5 to 7 V full signal range)
- Shielded twisted pair for pressure and temperature

Conclusions

A new silicon MEMS sensing element has been designed and tested

Performance is according to expectations

- Sensitivity is lower than expected
- Assembly of the element limits the testing
- A concept for a new differential pressure sensor has been presented and is under development

Acknowledgements

The Research Council of Norway For financial support under contract 173943 to develop the prototype of the MEMS element

European Space Agency

For financial support under contract C22927_09 to develop the Space sensor

Silex Microsystems

For technological support in design and processing of the MEMS element