Development of MEMS based EP

TNO, NanoSpace, EPFL, QMUL, SystematIC

CANEUS / ESA MNT Workshop 2010

TNO | Knowledge for business

Berry Sanders, Business Developer

What do we want to achieve

- To provide small European missions using micro and nano satellites with the possibility to conduct high delta V manoeuvres in order to perform exiting science and space applications
- This goal can be accomplished by developing a miniaturised high Isp propulsion system that is
 - highly miniaturised
 - modular
 - simple and affordable
 - plug and play
- Benefits
 - Lower cost and faster development for missions
 - Space science and applications become more accessible

Feasibility study

- A team consisting of EPFL (CH), Nanospace (SE), TNO (NL) QMUL (UK) and SystematIC (NL) have investigated possibilities for EP Miniaturisation and started its development
- The Colloid thruster offers a very good potential for miniaturisation
 - Size independent physics
 - Adjustable working points between high thrust and high lsp
 - Medium to low voltage (max 3 kV)
 - Components can be easily designed in MST
- The technology can be applied to a broad range of missions and applications

Colloid thruster technology

Electrostatic acceleration of charged species for propulsion Droplets, solvated ions or a mixture of them

Assessment of potential missions

Parameter	CubeSat 1U	CubeSat 3U	NanoSat 8 kg	MicroSat 27 kg	MicroSat 64 kg	MicroSat 125 kg
ACS						
Bang-bang system	0	0	$\checkmark \oslash$	✓	✓	~
Wheel unloading	0	0	√⊘	1	×	×
Low perturb. compensation	N/A	N/A	N/A	N/A	\checkmark	\checkmark
Orbit control and transfers						
Drag make-up*	√⊘	$\checkmark \bigotimes$	√ 🧭	✓ 🧭	✓	\checkmark
FFM*	√⊘	√⊘	√ 🧭	✓ 🧭	\checkmark	\checkmark
De-orbiting*	√⊘	√⊘	√ 🧭	✓ 🧭	\checkmark	\checkmark
Orbital debris*	√ ⊘	V	√ 🧭	✓ 🚫	~	~
LEO ->MEO*	√ 🌱	 ✓ 	 ✓ 	\checkmark	~	~
GTO ->Moon*	 ✓ 	 ✓ 	√ ∛	\checkmark	~	~

Can be done with additional power

*Continuous low-thrust scenarios

Ideas for potential missions

- OLFAR
 - A swarm of microsatellites conducting radio astronomy from a moon orbit
 - MST-EP will be used for GTO Moon transfer
- Clean-mE
 - A Space Debris removing microsatellite
 - Attaches itself to space debris and de-orbits it
- Cubesat OPM
 - Propulsion module to bring a cubesat to its operational orbit after a piggy-back launch
 - Low cost launch and still reaching a dedicated orbit

Colloid thruster system design

7 MEMS based EP

CANEUS /ESA MNT Workshop sept. 2010

Thruster head design

PCU conceptual design

High voltage line 1 board drives 1 module Neutraliser The 3 heads can be controlled S propell independently W ant Power **HVPDU** i **PSU** ι 0.5 С h **PSU** 0.5 m Extractor grids W а **RTU PSU** t 0.5 Data (DCIU +PCU) r 0.05 W i Х Accelerator grids Acc

Each PSU controls

1 extractor voltage With Switch, can drive any extractor grid in multiple modules configuration

Preliminary design MEMS based EP

Developement programme

- Feasibility study has been completed under ESA contract (TRL 3)
- The same team will start the Microthrust programme (FP-7 Space)
 - EM will be developed and tested with functional subsystems
 - Microthrust will run between 2010 and 2013 (TRL 5-6)
- The follow on step is to develop a flight demonstration prototype to be ready in 2015 (TRL 7)
- First flight units could be delivered in 2016 (TRL 8-9)
- Challenges:
 - miniaturised space qualified HV units
 - miniaturised neutraliser
 - Life time testing

Road map

Conclusions

- Miniaturized propulsion can enable small and nano satellites to conduct missions for which now large satellites are needed
- The first preliminary study showed the feasibility of a Miniaturized and Modular MST Electric propulsion system using Colloid technology
- Between 2010 and 2013 the different subsystems will be developed in the FP-7 Microthrust project. In 2013 a fully functional EM will be tested
- The whole system could be flight tested in 2015 and operational applications can start in 2016
- This development will have interesting spin-offs like a miniaturized neutralizer and miniaturized HV components
- For more information: www.microthrust.net

