

## **Enabling technologies to meet future onboard data processing needs**

Space Passive Components Days – 2013 ESTEC

Presenter: Jørgen Ilstad – TEC-EDP

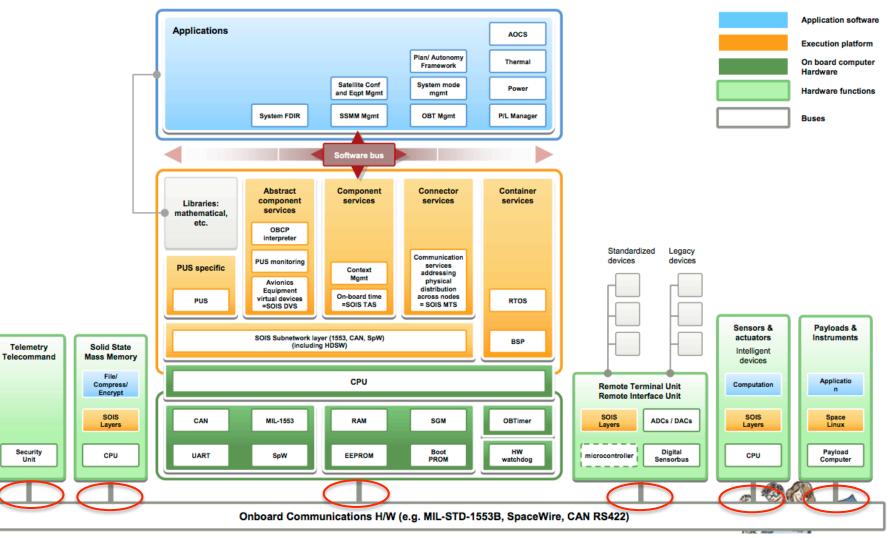


Miniaturisation and performance increase in terrestrial applications – does to some degree apply to satellite technology as well.





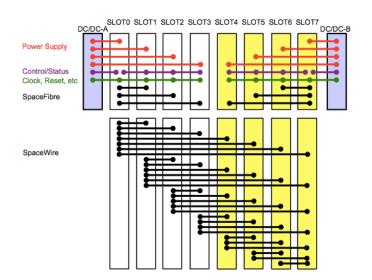
1990's


2013

**Mass and power reduction** is a recurrent topic – while at the same time **increasing data throughput**!

## **Passive Components and Space Avionics Open Interface Architecture**




SAVOIR – Passive components in the physical layer



## SpaceWire Backplane



- 1. ITT AO/1-6692/11/NL/LvH SpaceWire Backplane
- 2. Technology Research Program (TRP)
  - a. Budget: 130k€
- 3. Awarded: SEA Ltd
  - a. Subcontractors: Hypertac Ltd
- 4. Kick-Off: Q3 2011
- 5. Completion foreseen Q4 2013



## **SpaceWire Backplane Key objectives**



- Trade off different backplane architectures and technologies to produce a SpaceWire backplane specification for ECSS standardisation.
- The SpW-Backplane specification shall
  - a. use a standard backplane connector with clear path to a space qualified version
    - ensure good signal integrity for high speed signals up to 2.5Gbit/s and beyond.
  - b. define a **variable/expandable number of slot/boards** for the backplane.
  - c. define a number **SpaceWire interconnections and high speed serial links to co-exist on the backplane**.
  - d. specify fault tolerant power distribution
  - e. use an appropriate number of SpW links, HSSL and discrete I/O per module
  - f. Host user defined **general I/Os**

#### Adopt Concepts from Existing Terrestrial Standards? "Newer" standards



#### 1. PICMG AdvancedTCA 3.0 R3.0

a. The PICMG 3.0 "core" specification will specify board, backplane and shelf mechanicals, power distribution and the connectivity required for system management.

#### 2. PICMG AdvancedTCA 3.4 PCI Express

a. Define how PCI Express and PCI Express Advanced Switching transport is mapped onto PICMG 3.0

#### 3. PICMG AdvancedTCA 3.5 RapidIO

a. Define how Serial RapidIO transport is mapped onto PICMG 3.0

#### 4. PICMG EXP.0 R1.0

 Define the connector, electrical, and mechanical requirements of 3U/6U System Boards, Peripheral Boards, Switch Boards, and Backplanes using PCI Express as peripheral interconnect with CompactPCI interoperability features.

#### Adopt Concepts from Existing Terrestrial Standards? "Newer" OPEN standards



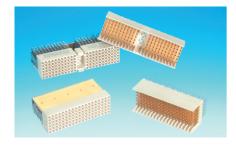
#### 1. ANSI VITA 46.0 (VPX) and 46.3 PCI-express over VPX

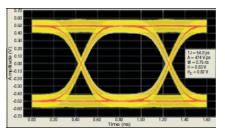
a. PCIe on VPX Fabric connector

#### 2. ANSI VITA 65 – OpenVPX (VITA)

- a. Approved in June 2010
- Adapted for military/aerospace that needed ruggedized systems
- Specifies a minimum set of backplane configurations also suitable redundant architectures.
- d. Gives clear information about data rate, routing topology and fabric topology that has to be used on the backplane.
- e. Contains a number of sub specifications for ruggedized solutions.

#### **3.** ANSI VITA 78 – SpaceVPX


- a. Draft released June 2013.
- b. Derived from OpenVPX
- c. Defines use of SpaceWire in the control plane


#### Which backplane connector? Impedance matched connector or not?

#### For SpW links from 200 Mbps up to 400Mbps

- Impedance matched connector may not be necessary.
- SpaceQ cPCI connector looked promising to fulfill SpW needs. (Hypertronics K2A)
  - It is not impedance matched
- Need careful diff. signal to ground pin arrangement to avoid crosstalk and signal distortions.







1.25Gbits w. NEXT







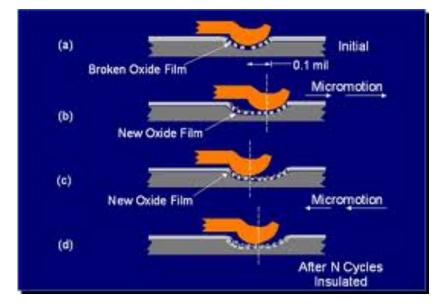
#### Which backplane connector? Impedance matched connector or not?



#### For SpFi links from 2.7Gbps and beyond:

- Impedance matched connector is needed
- No good Space Q alternative yet.
- Some **promising candidates** are emerging
  - E.g. Hypertronics KVPX, Tyco HSR
- Little information is available
- **Pressfit** connectors are a problem
- ITAR restrictions may be a concern

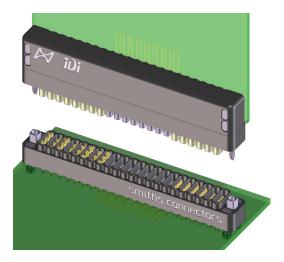









#### Impedance matched and high density,- but


- a. Must show no pin fretting when subjected vibration
- b. No corrosion during long term exposure
- c. Support an appropriate number of mate and de-mate cycles.
- d. Acceptable insertion force levels.
- e. Space approved materials



## **Candidate connector for SpW backplanes**



- A modular approach proposed by Hypertac Ltd is under evaluation.
- Its suitability is measured against requirements such as:
- Suitable for 3U and 6U card form factors
- Minimized mass
- Compatible with ECSS-Q-ST-70C, Q-70-71, Q-ST-70-02
- Alignment pin and connector keying
- Support minimum 4 SpW links
- 1000hm differential impedance
- Diff. pairs shielded against cross talk
- Support link rates of up to 2.75 Gbaud
- Support up to 12 power pins (e.g. +/- 12V and 5V etc)
- Ample amount of pins for discrete signals



## Low Mass SpaceWire Cable



- ITT AO/1-6214/09/NL/LvH Low Mass SpaceWire
- Technology Research Program (TRP)
  - Budget: 150k€
- Awarded: Axon Cable Ltd
  - Subcontractors: Star Dundee and EADS Astrium
- Kick-Off: Q3 2010
- Completed: Q4 2012



European Space Agency

Image by courtesy of Axon Cable



- **1. Define and measure electrical parameters** of the ECSS-E-ST-50-12C cable as a reference for a new cable design
- 2. Identify the appropriate **shielding** for the cable

## **3.** Connector/Cable bonding

- 4. Identify **suitable materials** to obtain lower mass of the SpaceWire cable
- 5. Perform electrical performance validation and mechanical endurance tests
- Provide a draft proposal for updating the ECSS-E-ST-50-12C cable specification

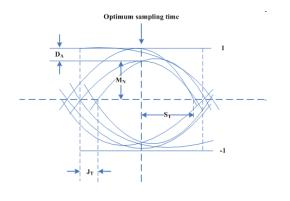
# Characterisation of an ECSS-E-ST-50-12C Cable - Specification

SpaceWire Reference Sample

a. Qualified according to ESCC3902.003.01.

| Performances | Туре                  | Max                 | Nominal                      |
|--------------|-----------------------|---------------------|------------------------------|
| Metrics      | External diameter     | 7.5mm               | 6.9mm                        |
|              | Mass                  | <85g/m              |                              |
|              |                       |                     |                              |
|              | Electrical resistance | <239 Ω/Km           | 207 Ω/Km                     |
| Electrical   | Insulation            | >5 G Ω under 500Vdc | $>5$ G $\Omega$ under 500Vdc |
|              | Capacitance           | <50 pF/m            | 45pF/m                       |
|              | Impedance             | 100Ω+/-6            | 100 Ω                        |
|              | Insertion losses      |                     | <1dB/m @ 400Mhz              |
|              | Propagation factor    | 4.3ns/m             | 4.25ns/m                     |
|              | EMI                   | >45dB               | >60dB                        |








#### The most pertinent parameters to express are the:

- **S21** Transmission coefficient (insertion loss)
- **S22** Reflection coefficient (return loss)
- **NEXT** Near End Cross Talk
- FEXT Far End Cross Talk
- Primary and Secondary Parameters (RLCG)
- Characteristic Impedance Zc
- Skew both intra-pair and pair to pair skew
- Shield effectiveness Zt

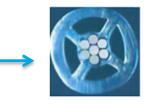
Eye Pattern measurements is good way to verify many of the individual parameters



## Ways to reduce the cable mass

# esa

#### **1.** Use lighter materials


- a. Use aluminium shields instead of copper
- b. Use lighter insulator material
  - a-PTFE instead of e-PTFE
- c. Use lighter outer jacket material
  - Kapton tape instead of PFA

#### **2.** Different construction techniques

a. Remove insulation between pairs

#### **3.** Increase flexibility

- a. Use more strands in the twisted pair wires
  - AWG2819 instead of AWG2807





## Some performance figures



| ESCC3902.003                                   | Variant 1<br>(Current SpW) | Variant 03<br>P551259    |
|------------------------------------------------|----------------------------|--------------------------|
| Mass (g)                                       | 80 max                     | 42 max                   |
| Overall Φ (mm)                                 | 7 max                      | 6.5 max                  |
| Static Bend Radius (mm)                        | 45                         | 25                       |
| Dynamic bend radius (mm)                       | 60                         | 30                       |
| Flexibility VS var1                            | 0                          | +                        |
| Impedance (Ω)                                  | 100+/-6                    | 100+/-6                  |
| Capacitance (pF)                               | <50 / 90                   | <50 / <90                |
| Rdc (Ω/m)                                      | 0.23                       | 0.23                     |
| Intra pair Skew (ps/m)                         | <80                        | <50                      |
| Inter pair skew (ps/m)                         | <130                       | <100                     |
| α (dB/m) @1Ghz<br>L cable for -6dB attenuation | -1.5<br>4.5m max*          | <b>-1.4</b><br>4.6m max* |
| RL (dB) up to 2Ghz                             | -9 max                     | -9 max                   |



- During the Low Mass SpW activity a survey was conducted to identify suitable 1000hm impedance matched connector alternatives.
- Some solutions exist but were at the time of the survey no viable solutions due to:
  - a. Large form factor
  - b. Sub-optimal shield terminations for a SpW Cable
  - c. ITAR restrictions on some products
  - d. Long lead times
- A suitable connector option for SpW is still sought after

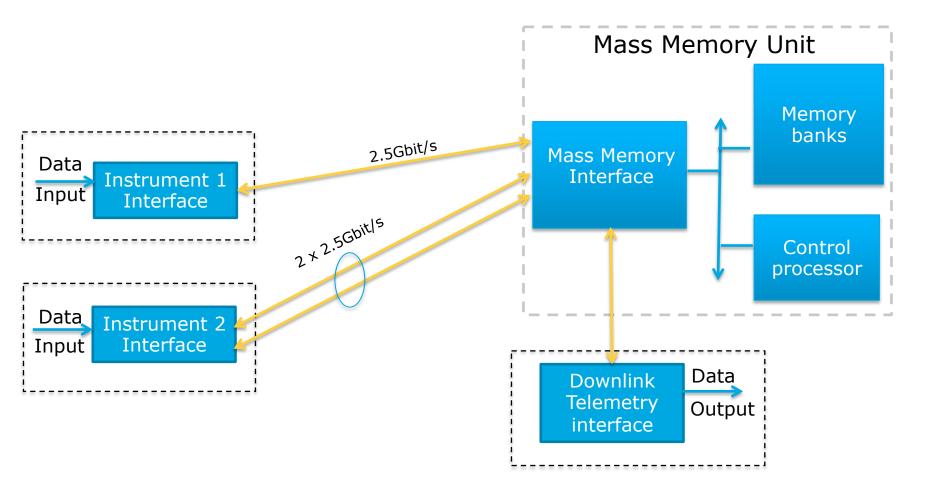
# High Speed Serial Links - Payload applications



- **1. Payload data transfer rates** is steadily increasing
  - a. Onboard data links operating in the Gigabit/s range is becoming a common requirement.
    - e.g. channel link or Wizard link
  - Future earth observation missions steadily aims to increase resolution and science return which translates to higher data rates.
- 2. Mass memory units will have to support such links both externally and internally
  - a. Several links required for recording and playback
  - b. Internal high speed signaling over backplanes

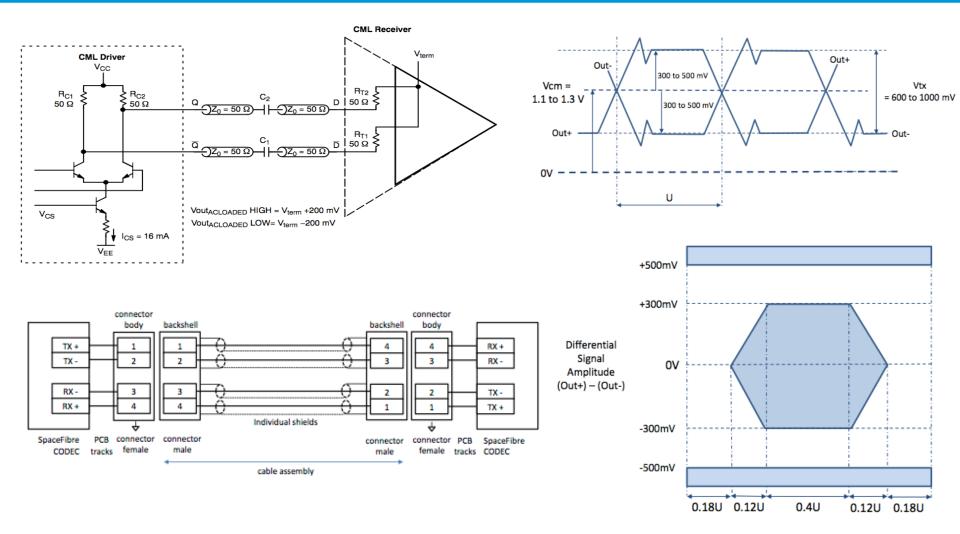
#### **3.** Cables and connectors

- a. Support high speed digital signal rates operating at Gbit/s.
- b. Compact and lightweight space qualified assemblies


## **SpaceFibre highlights**



- Supports both **optical** and **copper** based physical layer
- **Current Mode Logi**c (CML) signaling for copper
- 8/10 Bit encoding for DC balance and enabling AC coupling.
- Link initialization mechanism
- Quality of service
  - Retry mechanism for link recovery w.o. data loss
  - Virtual Channels with bandwidth allocation
- **Lanes** use multiple links to increase throughput
- Compliant to the protocols and routing mechanisms defined in the SpaceWire standard


## **SpaceFibre in payload applications**





## **SpaceFibre physical layer**





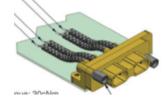

## **SpaceFibre – cable assemblies**



1. Connectors proposed for the SpFi cable assemblies

- a. AxoMac ESCC Variant 8 for cable assemblies
- b. Axomac ESCC Variant 2 or 11 for unit
- 2. Proposed flight cable
  - a. Axon 07072-ST-MDSA HDR -01



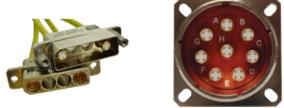

3. Optical cable assemblies are TBD



Variant 8



Variant 2




Variant 11

## **Other solutions?**



- 1. Twinax or Quadrax types of connector may offer a neat high speed solution.
  - a. MIL-DTL-38999 housing
  - b. Rugged D-Sub housing
- 2. Twisted pair or coax?



- a. The electrical interface must be compatible with coaxial cables
  - CML and VML is, while LVDS is not.
- b. Twisted introduce more jitter over distance than a coaxial cables but can be used for applications in the 2Gbit/s range.



## Thank you