

Low ESR SMD Tantalum Capacitors for Aerospace Applications

T. Zednicek, M.Barta, J.Petrzilek, M.Biler

AVX Czech Republic s.r.o., Dvorakova 328, 563 01 Lanskroun, Czech Republic Tel.: +420 465 358 126 e-mail: tomas.zednicek@eur.avx.com

Space Passive Component Days, 1st International Symposium – ESA/ESTEC – 24-26 September 2013

LOW ESR DESIGNS SURFACE / ANODE SHAPE

A KYOCEBA GBOUP (

LOW ESR DESIGNS SURFACE / ANODE SHAPE

LOW ESR DESIGNS SURFACE / ANODE SHAPE

Higher Power Dissipation = Higher Continuous Current + Surge Robustness

ESA ESCC Space Level Tantalum Capacitors

ESCC 3012/004 EPPL 2 uses multi-anode and 'mirror' design internal construction to achieve low ESR

			С	DC (V _R) at 85°	Rated Voltage				acitance	Capa
	50V (T)	35V (V)	25V (E)	20V (D)	16V (C)	12V (B)	10V (A)	6.3V (J)	Code	μF
A, B case	B(2000)		A(3000)						105	1.0
single anode									155	1.5
									225	2.2
(standard design)	C(1000)	B(1000)		A(2500)					335	3.3
	D(200)*	C(600)	B(1000)		A(2000)				475	4.7
									685	6.8
	E(150)*	D(120)	C(600)	B(1000)			A(1800)		106	10
									156	15
D Cas		D(100)		C(400)	B(600)			A(900)	226	22
multi ano		E(65)	D(65)	C(300)			B(650)		336	33
('mirror' dosig			E(65)	D(55)	C(350)			B(500)	476	47
(minor desig									686	68
				E(45)	D(55)		C(200)		107	100
F case					E(40)		D(45)	C(300)	157	150
						E(35)	D(35)		227	220
multi anode	0	JWIIT					E(35)	D(35)	337	330
(3 anode design))hm	20m(E(30)	477	470
			JUIIC	Ц '					687	680

TES ESA ESCC 3012/004 – Low ESR, HiCV Space Level

ESA ESCC Space Level Tantalum Capacitors

ESA QPL Qualified SMD Tantalum Capacitors

ESCC 3012 / 001 TAJ-ESA

ESCC 3012 / 004 TES

NEW HiCV & Low ESR QPL from October 2013)

Currently Low CV & High ESR

Evaluation & Qualification Completed

- Evaluation ESCC 2263000
- Qualification ESCC 3012 / 004
- Final Review Sep 2013

ESCC 3012 004 (low ESR) EPPL 2

ESA EPPL2 SMD Tantalum Capacitors

ESA ESCC Space Level Tantalum Capacitors

1. ESCC 3012/001 QPL (TAJ ESA series) 2. ESCC 3012/004 Low ESR, EPPL2 (TES series)

Capac	itance	Rated voltage							
μF	Code	4V	6.3V (J)	10V (A)	16V (C)	20V (D)	25V (E)	35V (V)	50V (T)
0.10	104							А	А
0.15	154			1004		40/004		А	В
0.22	224	E20	3012	/ 004	VS 30	12/001		А	В
0.33	334	CV ra	ange c	ompa	rison			А	В
0.47	474			• · · · P • ·			А	A/B	С
0.68	684					А	А	A/B	С
1.0	105				А	А	А	B/T	<mark>B</mark> /C
1.5	155			А	А	А	В	B/C	D
2.2	225		А	А	A/B	В	В	B/C	D
3.3	335	А	А	А	A/B	<mark>A</mark> /B	B/C	<mark>B</mark> /C	<mark>C</mark> /D
4.7	475	А	А	A/B	<mark>A</mark> /B	B/C	<mark>B</mark> /C	C/D	D
6.8	685	А	A/B	В	B/C	С	C/D	D	
10	106	A/B	В	<mark>A</mark> /B/C	С	<mark>B</mark> /C	C/D	D	E
15	156	В	B/C	С	С	C/D	D	D	
22	226	B/C	С	С	<mark>B</mark> /C/D	<mark>C</mark> /D	D	<mark>D</mark> /E	
33	336	С	С	<mark>B</mark> /C/D	D	<mark>C</mark> /D	D/E	Е	
47	476	C/D	C/D	D	<mark>C</mark> /D	D/E	Е		FS
68	686	C/D	D	D	D	Е			LO
100	107	D	D	<mark>C</mark> /D	D/E	E			
150	157	D	D	D/E	Е				- 0
220	227	Е	Е	D/E					
330	337		D	Е					- do
470	477		Е						

3012/004

- **ESR**
- nsizing option
- **High CV parts**

AVX Tan Power Curiosity's ChemCam Laser on Mars

630 tantalum multi anode capacitors

AVX Corporation developed and supplied the 630 tantalum multi-anode capacitors to power the ChemCam laser module on-board of Curiosity

ChemCam laser module, a combination of chemistry and camera equipment, is designed to analyze the chemical composition of rocks on Mars.

LOW ESR DESIGNS CATHODE MATERIALS

Anode and dielectric (Ta – Ta_2O_5) make Ta capacitors in general - highly stable, reliable and volumetrically efficient

Cathode materials - MnO₂ or Conductive Polymers

ESR@100 kHz Temperature Dependency

High voltage polymer development roadmap

Capability to manufacture 125V rated tantalum polymer capacitors, almost more than twice the rated voltage of similar products on the market today. Eng. Samples of TCJ V 6.8uF/100V and TCJ D 3.3uF/125V available

Hermetically Sealed Tantalum Polymer Capacitors

Stability improvement under extreme conditions

suppress oxidative degradations
suppress of humidity degradations

Hermetic Sealing

- lid
- sealing ring
- ceramic case
- inert gas

"oscillator" existing case CTC21 tantalum case

14

HAST Test Stability

Capacitance and ESR changes at HAST

Capacitance stability 10uF 35V over time, no BIAS

ESR stability over time, no BIAS

MnO₂ capable up to 230°C Conductive polymer capable up to 175 °C Causes of CAP & ESR instability above 175°C for polymer - instability is due to cathode degradation

Possible degradation mechanism:

- chemical or morphological changes of polymer

Possible sources of polymer changes:

- material impurities
- technological processing
- leakage current

Preliminary data show possibility of overcoming 175°C temperature limitation

HERMETIC PACKAGES OUTLOOK

TCH SERIES

- hermetic package design removes humidity / oxudisation related limitations
 - long term reliability of polymer capacitor up to
 - : $125^{\circ}C/0.66U_{R}/10.000hrs$
 - : 85°C/85% RH/1.000hrs
- the low ESR feature allows higher power rating capability of the capacitor, more efficient filtering and faster response in power supplies applications

Reliability 1	Fests
---------------	--------------

- ESCC 3012 PASS
- ESCC 5000 PASS
- vibration up to 125°C
 PASS
- vibration up to 40g;

ESCC 3012/005 – TCH Hermetical SMD low ESR Tantalum Polymer

released in July 2013

- Ongoing development of ESA qualified tantalum polymer hermetic caps
- Mission Critical Applications
- -Designed for Aerospace and Hi-rel applications
- Hermetically sealed
- Low ESR
- Rated voltage up to 100V
- High ripple current capability
- Stability under humidity
- <u>SMD</u> Case size including CTC-21D

'J' Lead Temination

Capacitance		Rated Voltage DC (Va) at 85°C								
μF	Code	10V	16V	20V	25V	35V	50V	63V	75V	100V
15	156									9*
22	226								9*	
33	336							9*	9*	
47	476						9*	9*		
68	686						9*			
100	107				9*	9*				
150	157			9*	9*	9*				
220	227	9*	9*	9*	9*					
330	337	9*	9*	9*						
470	477	9*	9*							
680	687	9*	9*							

Code	L	W	Н
9 (CTC-21D)	12.5	11	5.45
1	11	6	2.4

TCH Hermetically Sealed Tantalum Polymer

Roadmap (product launch schedule) for 2013 (key selling parts in bold)

CAPACITANCE AND VOLTAGE RANGE (LETTER DENOTES CASE SIZE)

Сарас	citance	Rated voltage DC (VR) to 85°C									
μF	Code	10V	16V	20V	25V	35V	50V	63V	75V	100V	
1,5	155										August 12
2,2	225										August 15
3,3	335										100/05
4,7	475										100/35
6,8	685										
10	106										
15	156									9 (150)	December 13
22	226								9 (120)	9 (150)	
33	336							9 (100)	9 (120)		330/10 220/16
47	476						9 (70)	9 (100)			600/10, 10, 10/25
68	686						9 (70)				680/16 , 150/25
100	107				9 (50)	9 (55)					47/50, (22/100)
150	157			9 (45)	9 (50)	9 (55)					,
220	227	9 (40)	9 (40)	9 (45)	9 (50)						
330	337	9 (40)	9 (40)	9 (45)							
470	477	9 (40)	9 (40)								
680	687	9 (40)	9 (40)								

CASE DIMENSIONS: millimeters

Code	Туре	L	W	н	W1	Α	S
9 (CTC-21D)	J-lead	11.8	12.5	5.8	10.5	1.9	8
9 (CTC-21D)	Undertab	11	12.5	5.45	10.5	1.5	8

"COTS+" Tantalum Polymer Proposal

 Commercial Polymer with Restrictive Design
 Statistical Screening & Process Management "Q-Process"

Project Milestones (status Sep 13)

- commercial CECC reliability testing data
- HiRel conservative design
- matrix
- manufacturing process route (excl.Qprocess)
- Q-process
- engineering samples
- release of first codes / 2000hrs life data

available defined defined optimization 1H14 TBC ~ 1H14 TBC ~ 2H14

AVX Q-Process – New Up-screening Model

- Q-Process (patent pending) defines a number of process, screening and conditioning enhancements. A new burn-in that has been optimized to create a more effective burn-in to improve inherent DC leakage.
 - Removal of Weibull grading (85C B/I) as it is possible to leave parts in the population that have healed, but which are mechanically less robust.
 - Application of enhanced statistical screening pre burn-in to remove nonnormal parts from the population.
 - Optimized reflow conditioning to thermally stress parts prior to statistical electrical testing.
 - Implementation of a new reliability model carried out on a lot by lot basis as part of lot acceptance testing.
- The Q-Process will give a more normal DCL population with lower probability of early life (post mount) failures and reduce the number of intrinsic dielectric defects within each lot.
- Q-Process has been introduced on MnO2 medical product with significant field failures reduction

AVX Q-Process – New Up-screening Model

Q-Process: Maverick Lot Detection

- AVX's maverick lot program is designed to identify any lot that is statistically different than previously supplied lots
- This program insures that the lots produced are statistically the same as the originally qualified design
- The maverick lot program is a key driver of continuous improvement projects at AVX

POLYMER COTS+ Matrix Proposal (2-3 years)

Design

• A B C D c

- A, B, C, D cases
- FR \geq 3 (conservative design)
- 100% hard surge current testing
- lower CV powder (conservative approach)

Preliminary COTS+ matrix

μF/V	6.3	10	16	20	25	35	50	63
0.47								B(400)
0.68							B(400)	B(300)
1							B(300)	
1.5						B(250)		
2.2						B(250)		C(200)
3.3						B(250)	C(200)	C(200)
4.7							C(200)	D(150)
6.8			A(200)			C(200)	D(150)	D(150)
10		A(300)	A(200)		B(150)	C(200)	D(150)	
15	A(300)	A(200)	B(150)		B(150)	D(100)		
22	A(300)				D(100)	D(100)		
33	B(70)	B(70)			D(100)			
47	B(70)	B(70)	D/Y(70)	D(70)				
68			D(70)	D(70)				
100		D(70)	D(70)					
150	D(70)	D(70)						
220	D(70)							
								-

• Assembly Q-process

- 6.3 to 63V
- MSL level 3 dry pack mandatory
- 100% ageing (no extra ageing need

(ESR₆ in mO in brackets)

POLYMER COTS+ Project Milestones

Project Milestones (status Aug 13)

- commercial reliability testing data
- HiRel conservative design
- matrix defined
- manufacturing process route (excl.Qprocess) defined
- Q-process optimization 1H14
- engineering samples of the first "true" codes TBC ~ 1H14
- release of first codes / 2k life data

A KYOCERA GROUP COMPANY

~ 2H14

available

defined

TBC

Hi-Rel Polymer statement on TH with Bias

- Sensitivity to humidity and higher sensitivity to thermo-mechanical load (such as aggressive reflow) is a disadvantage of polymer materials (applies to all manufacturers)
- Tantalum polymer capacitors can be qualified to tests at 60C/95% r.h. but not combination of high temp, high humidity and voltage such as 85/85 2000hrs, Vr (that is why polymers are not automotive qualified parts per AEC-Q200 requirements)
- If parts are tested on TH WITH BIAS than the parts might have issues to pass failing with both ESR and DCL

for mission critical applications TCH hermetically sealed polymer is strongly recommended

alternative hermetically sealed packaging of the end device may need to be used with the Polymer COTS+ designs

Q-PROCESS– Achieving highest reliability for Tantalum capacitors

Q-Process is not a theory. AVX is actively motivating and exercising the known failure mechanisms, then recognizing nonnormal parts and removing them from the population

AVX has real life evidence that the Q-Process works:

➢With implementation of only a portion of the methodology, customers have reported 99.99%+ elimination of failures

➤This was achieved through implementation of effective statistical screening and conditioning of the parts to remove maverick pieces from the population. This early phase of the Q-Process did not utilize the benefits associated with moving to an optimized 125C burn-in.

No other Hi-Rel tantalum supplier can demonstrate such an impact over such a long time frame

Hi-Rel and Aerospace Low ESR Tantalum Capacitors

European Standardization Based

ESA QPL qualified products

ESCC 3012 / 001 TAJ-ESA ESCC 3012 / 004 TES (HiCV&Low ESR SMD Oct.2013)

ESCC 3012 / 004 (low ESR) EPPL 2 ESCC 3012 / 005 TCH hermetical SMD proposal

CECC Avionics & Industrial IQC

CECC 30801 005 / 011 (CTC4) CECC 30201-032 (leaded Ta)

US Standardization Based

CWR09 MIL QPL group family CWR 11 (EIA case sizes) CWR 15 (Microchip) CWR 19 (Ext. range) CWR 29 (Low ESR) CLR79 / 81/ 90 /91 (Wet)

DSCC 95158 DSCC 07016 (Hi-Rel, low ESR, ext. range) DSCC 93026 (Wet)

COTS+ COTS+ Aerospace - SRC9000

Polymer Q-Process "COTS+" Under development for 2014

SUMMARY

New Range of Low ESR Tantalum Capacitors for Space applications available ESCC 3012/004 TES series (High CV & Low ESR) with

multianode offering mo

moving from EPPL2 to QPL

- 1] TCH SMD hermetically sealed polymer for mission critical applications
- 2] "COTS+" up-screened restrictive design polymer capacitors for general HiRel application or use inside of hermetically sealed end device packaging for high humidity environment
- AVX Conductive Polymer COTS+ will utilize AVX proprietary Qprocess statistical screening & manufacturing process

Thank You

Space Passive Component Days, 1st International Symposium – ESA/ESTEC – 24-26 September 2013

