

Cobham Microwave 29 avenue de la Baltique 91953 Courtaboeuf, FRANCE

The most important thing we build is trust

Investigation of Failure Mechanisms of Low Power Isolators and Circulators

Jean-Marc BUREAU Yohan LEDRU COBHAM Microwave MECANO I&D

OUTLINE

- FERRITE CIRCULATORS AND ISOLATORS
- OBJECTIVES AND WORKPROGRAMME
- ESCC REQUIREMENTS
- MECHANICAL ANALYSIS
- EVALUATION TEST PLAN
- EVALUATION TEST RESULTS
- SUMMARY AND CONCLUSIONS

Ferrite Isolators and Circulators

Ferrite Isolators and Circulators

Drop-in technology

SCOPE

CTB RF PASSIVE WORKING GROUP

ESA TECHNOLOGY RESEARCH PROGRAMME (TRP)

BACKGROUND:

- Reliability aspects of ferrite devices are not well known
 - Lack of experimental evaluation and non reliable life prediction calculations
 - No available data to support derating rules and failure rate models
 - No ESCC qualified components
 - ESCC specifications to be updated
- High reliability devices (robust materials, simple constructions, wide margins of safety)
- Trend: frequency increase, power increase

OBJECTIVES:

- Reveal, describe and understand degradation and failure mechanisms
- Provide basis for
 - Update of current specifications (ESCC 3202, ECSS-S-ST-30-11C)
 - ESCC Qualification of circulators and isolators
- Low power devices as a first step

WORK PROGRAMME

- WP1: Technology Analysis and Selection
 - Description and classification of technologies
 - Review of materials and processes
 - Identification of applicable requirements
 - Review of failure mechanisms, degradation, fatigue
 - Technology selection and identification (Process Identification Doc, Detail Specification, FMECA)

WP2: Thermomechanical analysis and definition of Evaluation Test Plan (ETP)

- Implement geometries and materials data in Finite Element Analysis
- Evaluate stress levels for vibration, shock and thermal environments
- Prediction of maximum allowable levels, including fatigue aspects
- Set evaluation levels accordingly (ETP definition)

WP3: Evaluation testing

- Manufacturing of test vehicles
- Testing and analysis

Structure to be evaluated

- Drop-in Isolator
- 1.125-1.375 GHz
- Low power
- Space heritage (as equipment)

- Copper alloy strip and ground planes
- Steel package
- Magnet
- Ferrite
- Stack and screw design
- Qualified platings
- Resistive chip load (AIN)
- SnPb and SnPbAg solders

	Maximum ratings	Derating ECSS-Q-ST-30-11 C
Operating temperature	-20°C/+80°C	Hot spot 30°C below max
Storage temperature	-40°C/+85°C	NA
Input RF Power	10W	75%
Reverse RF Power	5W	75%

ESCC 3202 test levels (Issue 2 draft)

Test	Screening	Qualification
Non operating		
Vibration	Random 36 grms	Random 50 grms
Shocks	NA	1500 g, 0.3 ms
Thermal cycling	5 cycles Storage range	200 cycles Storage range
Operating		
Power Thermal test (high power only)	Max Power (forward, reverse and short circuit) Max op T, vacuum, 1H	Max Power (forward, reverse and short circuit) Max op T, vacuum, 6H
Operating life	NA	Max reverse Power, Max op T 1h on/ 1h off. 1000 H

ESCC Evaluation

- Un-screened components
- Destructive tests:
 - Temperature and power stress tests
 - •Special test: Vibration, shock, thermal cycling
- Construction analysis
- Accelerated electrical endurance test

Mechanical analysis of isolator

Simulation of environment stresses:

- Finite element analysis (geometry + materials data)
- Pre-load + vibration, shock, cyclic thermal loading
- Vibration: No structural mode below 2000 Hz
- Thermal cycling: thermoelastic analysis except for solders (creep phenomena and fatigue)
- Prediction of maximum allowable levels

	Maximum allowable levels	Qualification levels
Vibration	63 to 94 grms (ferrite) 97 to 128 grms (magnet)	50 grms
Shocks	2040 to 3060 g (ferrite) 3100 to 4080 g (magnet)	1500 g
Thermal cycling	>30 000 cycles -55°C/+125°C	200 cycles -40°C/+85°C

MECANO

Evaluation Test Plan

• ESCC detail specification N° 2263202 as guideline + recommendations of the CTB RF Passive Working Group

Goal is to reach failures but evaluation levels are limited

	Evaluation level limit	Limiting factor
Power thermal	180°C on load	Solder melt
Vibration	1 00 g rms	Equipment
Shock	4000 g	Equipment
Thermal cycling	500 cycles	Time / cost

Evaluation Test Plan

Power and temperature step stress

- Isolator on test jig
- Power input on port 1

COBHAM

- Short circuit on port 2
- Thermocouple on load

Power and temperature step stress

Power step stress

- 80°C / 4 units
- full reflected power (failure mode worst case)

	Time/level	Result	Load temperature
1st step	2H @ 5W	No failure	110°C
2 nd step	2H @ 7.5 W	No failure	125°C
3rd step	2H @ 10 W	No failure	140°C
4th step	2H @ 12.5 W	No failure	155°C
5th step	2H @ 15 W	No failure	180°C

- No drift of temperature, no drift of return loss during each 2 hour step
- No drift of isolator S parameters after each step

Power step stress

Temperature step stress

- 5W / 4 units
- full reflected power (failure mode worst case)

	Time/level	Result	Load temperature
1st step	2H@85°C	No failure	115°C
2 nd step	2H@100°C	No failure	135°C
3rd step	2H@135°C	No failure	155°C
4th step	2H@165°C	3 failures	185°C

- Up to 3rd step:
- No drift of temperature, no drift of return loss during each 2 hour step
- No drift of isolator S parameters between steps 4th step:
- Sudden increase of return loss when load temperature is reached
- Solder melting temperature reached. Open circuit (load to strip solder)

Temperature step stress

Operating life test

Operating margin

Vibration test

- Random vibration
- Level amplification with trampoline
- 4 units, 3 axes x 180s

	Level	Result
1st step	50 g rms (qual)	No failure
2 nd step	80 g rms	No failure
3rd step	100 g rms	No failure

Shock test

- 1/2 sine, 0.3 ms
- Number of shocks at each step : 18 (3 x 2 directions x 3axis)
- 4 units

	Level	Result
1st step	1500 g (qual)	No failure
2 nd step	3000 g	3 failures

Open circuits (strip to load) metal pad on AIN lifted off

As predicted by analysis:

Ferrite and magnet breaks (no effect on RF performance)

Thermal cycling test

- Rapid change of temperature (2 chambers)
- -55°C/+125°C , 30 min. at each extreme
- 4 units

	Level	Result
1st step	20 cycles	No failure
2 nd step	50 cycles	No failure
3rd step	100 cycles	No failure
4th step	200 cycles	3 failures

- Open circuit (strip to load): metal pad on AIN lifted off
- Ferrite and magnet are OK

Environmental margin

	Qual level	Limit
Vibration	50 grms	> 100 grms
Shock	1500 grms	3000 g
Thermal cycling	200 cycles -40°C/+85°C	200 cycles -55°C/+125°C

- Coffin-Manson: Acceleration factor for thermal cycling $(\Delta Ta / \Delta Tu)^2 \# 2$
- Limiting factor for this particular design: metal pad peel strength on AIN

SUMMARY AND CONCLUSIONS

- Full ESCC evaluation performed on a ferrite isolator
- ESCC 3202 (Issue 2 draft) Qualification levels confirmed, margins quantified
 - Operating (power, thermal)
 - Environment (vibration, shock, thermal cycling)
- Some failures, never seen through all qualifications, detected at higher stress levels
 - Correlation with levels predicted by mechanical analysis
 - Weaker points and failure mechanisms identified
 - Improvements if needed: higher temperature solder, BeO load, stress relief
- Circulators have more margin (no load, no solder)

Next steps -> Evaluation / qualification of:

- Coaxial low power isolators (X-Ka bands)
- Coaxial high power isolators including vacuum aspects (L, S, C bands)

Thank you for your attention !