Space Passive Component Days, 1st International Symposium

Hideki Yoshino

25th September, 2013

Group & Company Profile

Business of Tateyama

Products for Space Applications

Solid Body type fuse

The Group

Group overview

SLOGAN: Quality is our life blood

Established :

May, 1958

President :

Syoichirou Mizuguchi

Capital:

USD 13.4 million(As of March 2013')

Turnover:

USD 295million

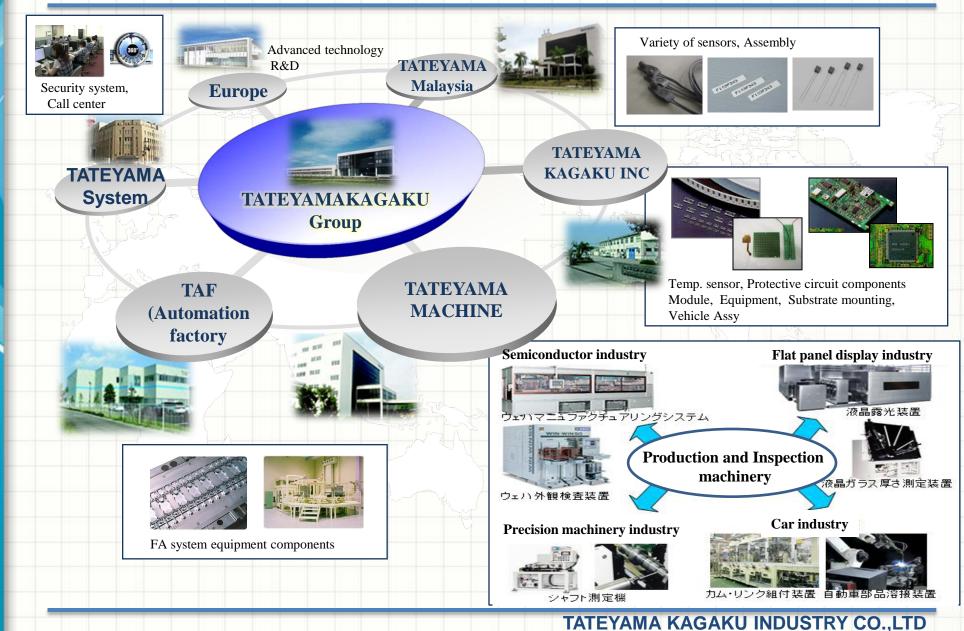
(As of March 2013')

Employees :

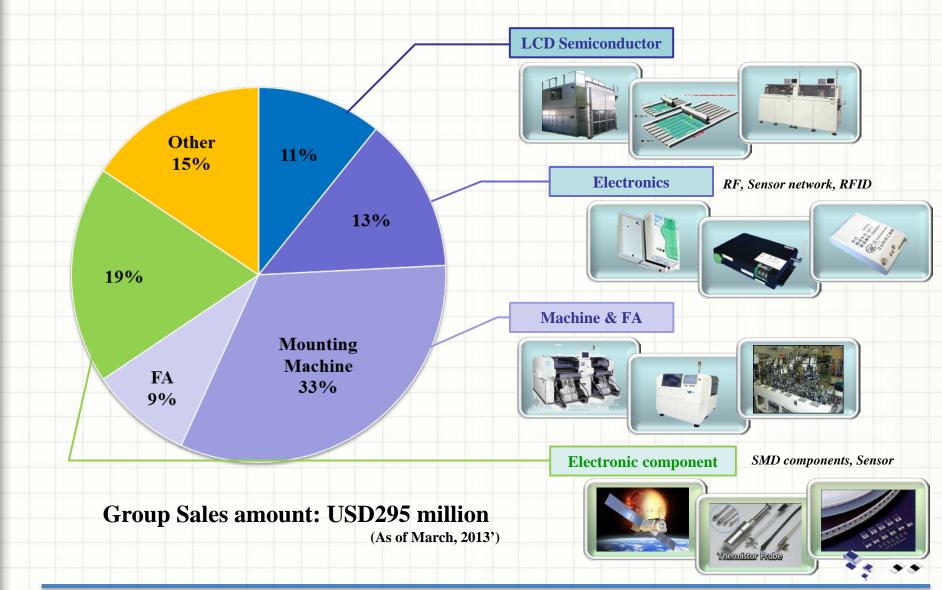
Headquarter :

1,297

(As of March, 2013')



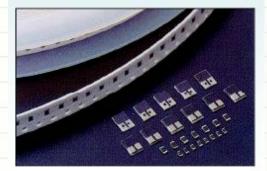
4


Location of Tateyama Kagaku Group

Group combination



Business field for Group



CONTENTS

Date of Establishment : Number of Employees : Annual Turnover :

JAXA CRK

Thermistor & ESD varistor

Only 1 company for Temp. Sensor

USD 86 million (As of March, 2013)

468

May, 1958

TATEYAMA KAGAKU INDUSTRY CO., LTD

TKI main operating segment

Consumer Market

Digital Camera Mobile/Battery Pack ^{pe} Washing Machine ^{pe} Shaver Cooking Machine ^{pe} LED Lightning PC/HDD, SSD Printer

Industrial Market

Smart Grid meter Proximity Switch LED Lightning Inverter Microwave Sensor Network

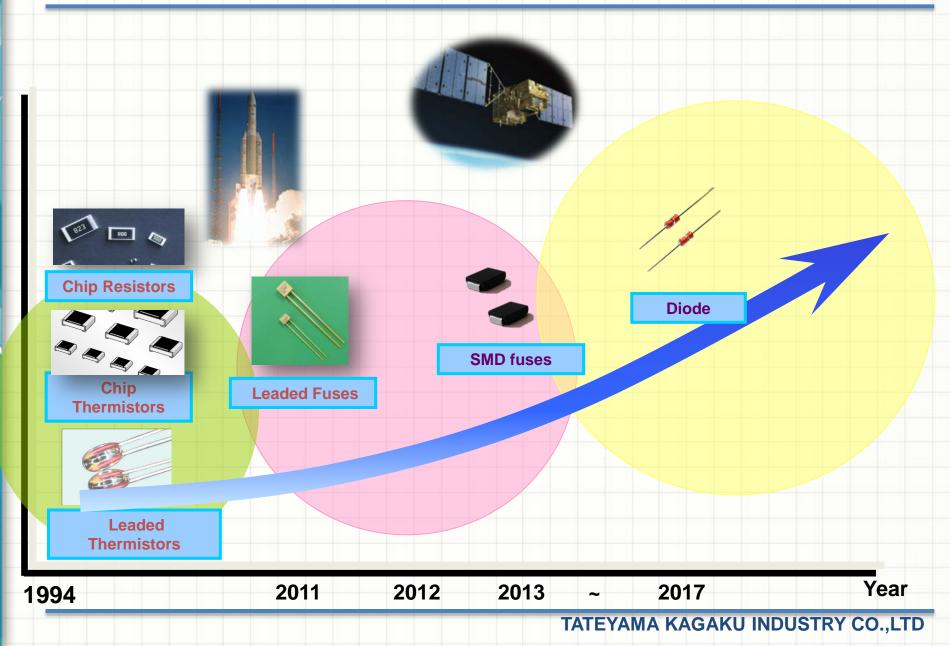
Medical Market

Blood Sugar Meter Environment Instrument

Europe

Automotive Market

Air Conditioning system Climate Control LED Head Light Car Navigation, Antenna Combustion Engine, IGBT



Aero Space Market

Satellite Rocket

Space Business in Tateyama!

Space Applications

Thick Film Resistors for Space Use

CRK4H

CRK2H

 3.20 ± 0.20

5.00±0.20

2.60±0.20

2.50±0.20

0.60±0.10

0.60±0.10

 0.50 ± 0.20

 0.60 ± 0.20

	on & Feat	ure 🕨			Ratin	a	項目/Item	CRK16	H CRK10H	CRK8H	CRK4H	CRKa
						3	使用温度範囲(℃)			-55~+1;	DE.	
		ガラス保護 Glass Pr	tind Directive Coating				Operating Temperature Range (D)		-99~+1	20	
			H	1251	Ż		公称抵抗值範囲(D) Resistance Range((Ŭ.	Max	50m, 1.0-	~10M	
				LA.	はんだメッキ Sn/Pb Plating		最高使用電圧(V) Max. Overload Voitage(/) 50	150	200	200	200
					ーニッケルメッキ Ni Plating		定格電力(W) Power Rating(W)	0.1	0.125	0.25	0.33	0.8
Satellite, Space	station, Payloa	High Pur	ルミナ基板 ty Alumina Substrate at for space.	抵抗 Resistive Element	內部電極 Inner Electrode		定格電流(A) *2 Rated Current (A)	1.0	1,5	SF	2.0	
Superior in stat Using solder pla	NAME OF A DATA OF A DATA	maller is seen to show that the	and the construction and the construction of t	er.			最高過負荷電流(A)。 Max. Overload Current(/	2.0	3.0		4.0	-
100% screening	g, Lot assuranc	e inspection	& periodic QC	L.			抵抗温度特性 *1		L:±200ppm/C(1.			J~9.1Ω)
							T.C.R.		K:±100	opm/C (1)	o~10MΩ)	
Type De	signatior					÷	※1:ジャンバー抵抗には道 ※2:ジャンバー抵抗にのみ		%1:Jump %2:Only			
	JAXA		CRK16H	K	103	F:±19	6 R					
	JAXA		CRK16H	ĸ	103	F:±19						
"JAXA"は宇宙 表す。"J"と省	宙共通部品等であ	ゆることを	CRK16H 形式 Style	K 特性 Characteristic	公称抵抗值	G:±29	6 雪振措造・はん					
表す。"J"と省 "JAXA" indic	宙共通部品等であ	rt is for	形式	特性	公称抵抗值	G:±29	Ko 電極構造:はん 仕上げの両面電 R:Double-sidec 容差 plated electrode	ž –				
表す。"J"と省 "JAXA" indic space use and i	宙共通部品等であ 略できる。 cates that the pa	rt is for	形式	特性	公称抵抗值	G:±29	Ko 電極構造:はん 仕上げの両面電 R:Double-sidec 容差 plated electrode	ž –				
表す。"J"と省 "JAXA" indic space use and i	由共通部品等であ 略できる。 cates that the pa may be abbreviate	rt is for	形式	特性	公称抵抗值	G:±29 J:±59 抵抗值許 Resistance To	K6 電極構造:はん 仕上げの両面電 R:Double-sideo plated electrode	ž –				
表す。"J"と省的 "JAXA" indic space use and in Dime	由共通部品等であ 略できる。 cates that the pa may be abbreviate ension	rt is for ad "J",	形 式 Style	特性 Characteristic	公称抵抗值 s Nominal Resistance	G:±29 J:±59 抵抗值許 Resistance To	K6 電極構造:はん 仕上げの両面電 R:Double-sideo plated electrode	ž –				
表す。"J"と省 "JAXA" indic space use and i Dime 形式 Style	由共通部品等であ 略できる。 cates that the pa may be abbreviate ension L	rt is for æd "J",	形 式 Style H 0.45±0.10	特性 Characteristic	公称抵抗值 s Nominal Resistance	G:±29 J:±59 抵抗值許 Resistance To 3	K6 電極構造:はん 仕上げの両面電 R:Double-sideo plated electrode	soider				

 2.00 ± 0.20

 3.80 ± 0.20

0.50±0.30

0.50±0.30

L3

L3

w

NTC Chip Thermistor for Space Use On EPPL

Construction & Fe	eature Rating	項目/item	2012	
Construction and		使用温度範囲 (℃) Operating Temperature Range (℃)	-25~+125°C	
	ガラス保護族 Glass Protective Coating	動作温度範囲(で)*1	-40~+125°C	
		Operating Temperature Range (C)	an Linnya	
	ithExy+ Sn/Pb Plating	保存温度範囲(C) *2 Storage Temperature Range(C)	—55 ~ +125℃	
	=======================================	ゼロ負荷抵抗信範囲(Ω)		
	Ni Plating	Nominal Zero-power Resistance (0)	2.186k~1.388M	
	高純度アルミナ基板 サーミスタ 内部電極 High Purity Alumina Substrate Thermistor Inner Electrode	ゼロ負荷抵抗値許容差(%) Nominal Zero-power Resistance Tolerance(%)	J=±5%, K=±10%	
Satellite, Space station, Pa	yload equipment for space.	公称B定数範囲(K)	2610~4800	
High mechanical strengt	and reliability are available due to	B-Value Range (K)		
Using solder plating with	coated structure on alumina substrate. an achievement to avoid whisker.	許容定格電力 (mW) Allowable Operating Power (mW)	5	
100% screening, Lot assur	ance inspection & periodic QCL	定格電力 at 25℃ (mW)		
		Rated Power at 25°C (mW)	130	
Type Designat	ion	※1:通電は行わせるが、ゼロ負荷抵抗値の規格を設い ※2:無負荷放置された場合でも、その性能を失わない		

JAXA	2160/A10	201	2	B	4100H	1002	J
"JAXA"は宇宙共 表す。"J"と省略で	↓ は通部品等であるこ できる。	とを 形: Style	1 100 10 100 100 100 100 100 100 100 10	き:はんだメッキ 両面電極構造	B定数 B定数許容 B-Value Toleran	The second	抵抗值許容差 Resistance Tolerance
	s that the part is Il be abbreviated "		B : Doub plated e	le-sided solder ectrode	4100→4100K G=±2% H=±3% J=±5%	1002—10kΩ	J=±5% K=±10%
	•					* L1	
Dimen	ISION				ú		
Dimer	w	н	LI	L2	L3	nt:mm)	H H

13

Solid Body type fuses

On EPPL

1. Background

Company policy: *Expanding space component business*

Core technology: Thick Film Printing. Looking for a new development product with thick film printing method

Launch development of Fuse

Accelerate development

Obtain JAXA qualification in 2011

Thick Film Resistors already supplied for Space use

Information: -Difficult to obtain fuses -Long lead time

2. Function of fuse

2.1 Common function

Application condition with fuses mounted	Fuse operation
In Normality	Shall not be open circuit
In Abnormality	Shall be open circuit and not be reconnected

2.2 Necessary function for space use

- Resistance to vibration and shock
- Performance in vacuum environment

2.2 Necessary function for space use

2.2.1 Resistance to vibration and shock

Necessary to have resistance to vibration and shock caused by launch of rocket

Construction of fuse and Resistance to vibration and shock

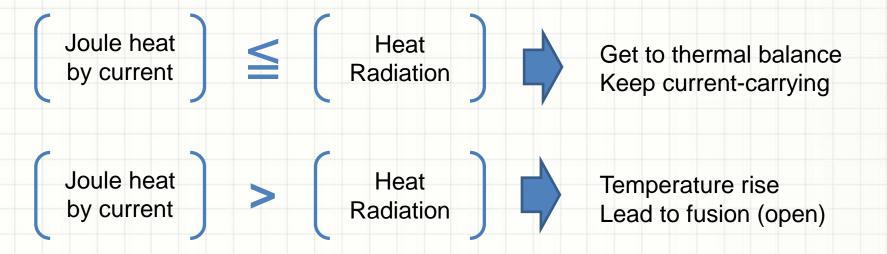
Construction	Resistance to vibration and shock	
Cavity-style	Fair	
Solid-style	High	

2.2 Necessary function for space use

2.2.2 Performance in vacuum environment

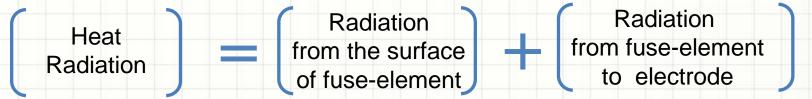
Fuse shall show same performance in both vacuum and non-vacuum environment (Non-influence by atmospheric pressure)

Effect of vacuum environment


a) Change of pre-arcing time by reduction of heat radiation

b) Open circuit by reduction of vapor pressure

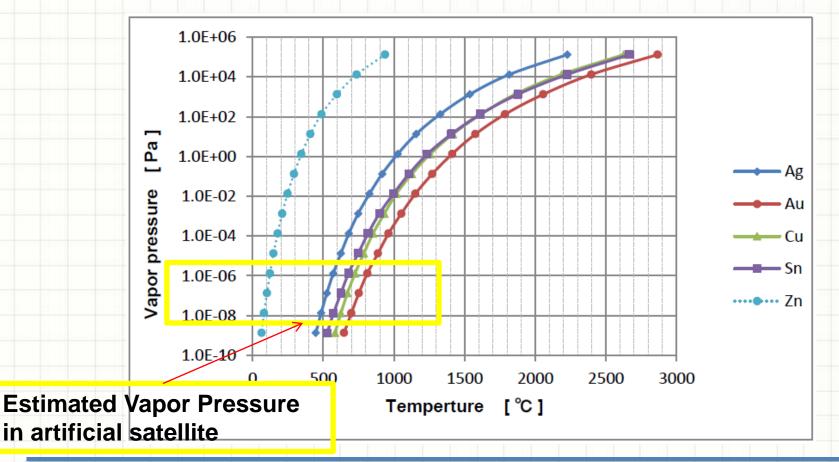
Effect of vacuum environment


a) Change of pre-arcing time

Balance between self-heating and heat radiation

a) Change of pre-arcing time

In case that fuse-element is exposed to the air,


"radiation from fuse-element" decrease or is lost in vacuum environment

• Change of pre-arcing time (become shorter)

Effect of vacuum environment

b) Open circuit by reduction of vapor pressure

□ Vapor pressure curve

Example of effect of vacuum environment

b) Open circuit by reduction of vapor pressure

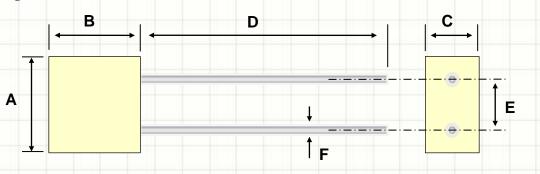
In case that fuse-element is exposed in the air,

fuse-element is sublimated to the gas and open

in vacuum environment

Product with element exposed (Status after 5 minutes in 80% current flowing in vacuum)

Construction:

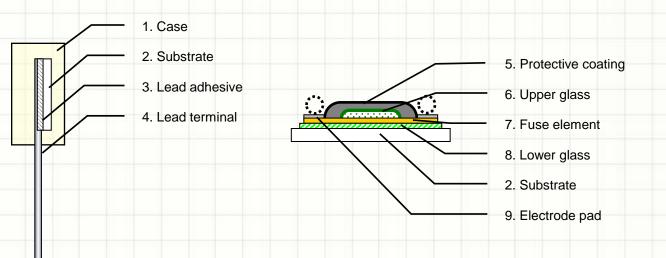

: Non-exposing construction of the element

3. JAXA qualified product; Leaded Fuse

Ratir	ng							
	Rating	J	Pre	-arcing ti (m sec)	ime	Operating Temperature	Maximum breaking capacity	Style
Voltage (V)	Current (A)	Resistance Max (m ohm)	250%	400%	600%		[DC]	
72	1.0	220						
72	1.5	163						
72	2.0	75.0						14
72	3.0	43.8	10.0 ~	1.00 ~	0.15 ~			J1
72	5.0	22.5	~ 300	~ 15.0	~ 3.00	-55°C		
72	7.5	13.8				~	1,000A	
72	10.0	10.7				+125°C		
72	15.0	7.00						
126	1.0	270	10.0	0.75	0.10			J2
126	3.0	95.0	~	~	~			
126	5.0	40.0	300	15.0	3.00			

3. JAXA qualified product; Leaded Fuse

Style and Dimension



Stule	Dimension (mm)							
Style	А	В	С	D(Min)	Е	F		
J1	7.0	5.4	3.5	40	4.0	0.60		
J2	9.0	9.3	5.0	57	5.0	1.20		

24

3. JAXA qualified product; Leaded Fuse

Construction

Special Feature

Upper-glass layer on fuse-element and solid

4. Feature of JAXA qualified product; Leaded Fuse

Upper-glass layer

Function of "upper-glass layer"

- Safely shutting current down
 - Absorbing shock made by arc at clearing action
- Electric insulation after firing
 - Getting electric insulation caused by compound made by clearing action

Mechanism of clearing action

- Self-heating by overload current
- Fuse-element melts and changes to gas
- Gas diffuses into upper-glass
- Upper-glass melted by heat and make compound
- Made compound shows electric insulation

Upper glass

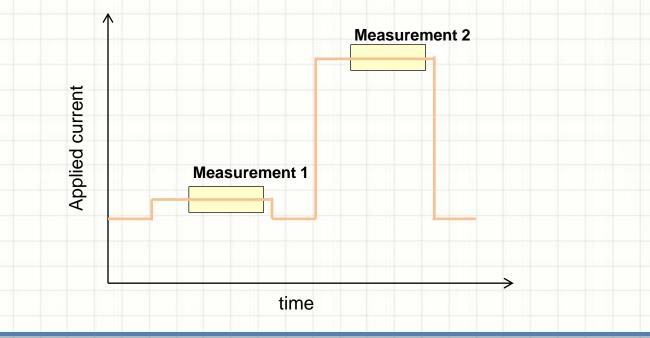
Compound

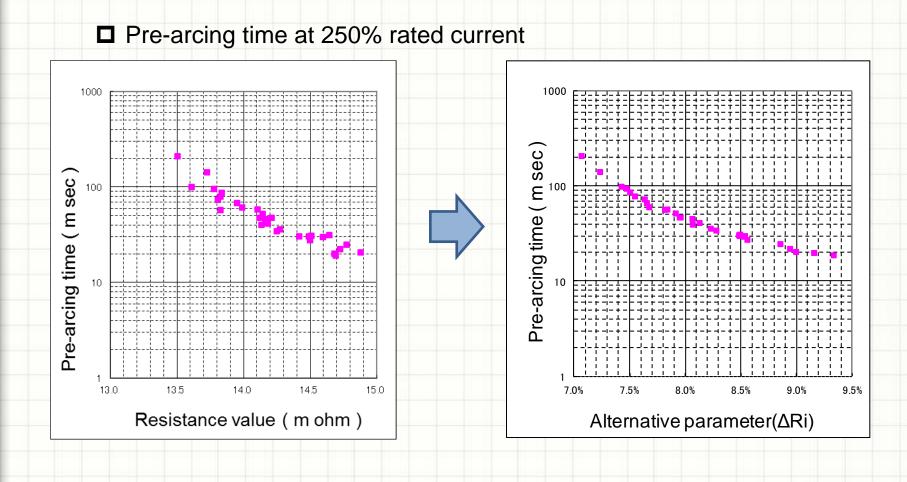
Fuse-element

Quality conformance inspection Group A (JAXA-QTS-2210)

Group	Examination or Test	Number of units (/Lot)
A1	X-ray inspection	ALL
A2	Thermal shock (5 cycle) Burn-in (168h) Resistance	ALL
A3	Externals, dimensions and marking	AQL 1.0%
A4	Current-carrying capacity Dielectric strength Overload interrupt Insulation resistance	<u>21</u>
A5	Terminal strength	4
A6	Solderability	4
A7	DPA	3

Pre-arcing time Measurement of pre-arcing time = Destruction test But, impossible to make measurement of pre-arcing time directly on the shipping products


> Set up an original checking process on product characteristics as in-process inspection


> > Assurance by measurement of alternative parameter on all products

Sorting pre-arcing time process (in-process inspection)

Measurement 1; Resistance value which is free from the influence of self-heating Measurement 2; Resistance value at the time of temperature rise by self-heating

Making a prediction of pre-arcing time by <u>change of resistance value (alternative parameter)</u>

30

Conclusion

-Tateyama Fuse: Solid body type Superior resistance to vibration and shock and keep performance in vacuum environment.

-Set up an original checking process on pre-arcing time

- As our company strategy, we are expanding space business in the future under our company slogan, "Quality is our life blood"

Thank you very much !