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ABSTRACT 

Murata has developed a Small High-capacity multi-layer ceramic capacitors for space 

application using a thin layer technology, previously used for consumer, then for 

automotive applications. 

Currently five items are available from 0.1µF to 22µF which were qualified by 

up-screening from automotive version. 

In order to realize a small size and high capacity Multi-layer ceramic capacitor, Murata 

used thin ceramic sheet technology, uniform and refined inner electrode(Ni) technology, 

and control technology of the oxygen vacancies. 

In this paper, I will introduce the technology with product introduction of Small Size 

High capacity multilayer ceramic capacitor. 

 

1.Introduction 

Murata has received a development request for small size high-capacity products from 

Nippon Avionics and JAXA to POL (Point Of Load) DCDC converter.(Fig.1) 

 

              

      Fig.1    Out sight                                    Inner sight 

 

Because of the thin dielectric thickness test conditions and acceleration factors had to 

be analyzed and verified. The dielectric thickness of the ceramic was reduced to 3 

micrometer. Finally 5 Items received JAXA certification in June of 2012 as 

JAXA-QTS-2040/M105 (Table 1), which were developed for POL DC/DC converter, 
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assured for S-level.  

 

       Table 1  JAXA-QTS-2040/M105 Item 

Pho

to.

Part No. Ratio 

voltage 
(V)

Capacita

nce
(uF)

Nominal

Dimension
L×W×T (mm)

Dielectric 

thickness
(um)

Mass

(mg)
（Typical）

① J2040/M105-1608X7RC104 25 0.1 1.6×0.8×0.8

0603 inch

9 7

① J2040/M105-1608X7RB105 8 1.0 1.6×0.8×0.8

0603 inch

3 7

② J2040/M105-3216X7RB106 8 10 3.2×1.6×1.6

1206 inch

3 55

② J2040/M105-3216X7RA226 3.5 22 3.2×1.6×1.6

1206 inch

3 55

③ J2040/M105-3225X7RB226 8 22 3.2×2.5×2.5

1210 inch

3 130

 

 

The parts were up screened from automotive-grade to space use, solder coated, and 

rated voltage derating applied. 

Fig.2 represents the capacity per unit volume for aerospace use and for consumer 

goods. Aerospace use is equivalent to that it has reached the level of consumer goods 

in year 2000. 
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            Fig.2  The capacity per unit volume 

 

 

 



2.Technology of microstructure 

Fig.3 represents a process of MLCC for aerospace. 
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         Fig.3 Process of MLCC for aerospace 

 

 

From ceramic powder mixing process to measurement process, the process for 

automotive grade products is applied. 

Then, from hot solder dipping to group A inspection, a process to space use is added. 

It needs micro material control technology for production Small Size and High 

capacitance MLCC. First technology is the refined and uniformity of inner electrode. 

Second technology is the making of a sufficient number of grain and high density 

ceramic sheet. The 3rd technology is the control moving oxygen vacancies.(Fig.4) 

These three technologies are described in the follwing 
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       Fig.4 Micro control technology 

 

2.1 Inner-Electrode Technology 

Fig.5 shows analyzing a sample that caused the initial failure. It is considered to have 

failed by dielectric breakdown caused by cohered inner electrode and void. 
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 Fig.5 Analysis of IR degradation component       Fig.6 Uniformity of composition 

 

Fig.6 represents the unevenness of printed electrode. This irregularity can cause local  

thickening of the internal electrode. Irregularity could be reduced to less than half of the 

former printing process. 

 

2.2 Ceramic-sheet Technology 

Fig.7 shows the relationship between the time to failure and the number of grains of 

ceramics. The time to failure shortens when the number of grains is small. 

 



This is caused by the Core -shell structure. The volume resistivity is determined by 

core, shell and the grain boundary. IR will decrease if shell and grain boundaries are 

thin and insufficiently generated (see Fig.8). 
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  Fig.7 Failure time vs number of grains              Fig.8 Core-shell micro structure 
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Therefore, we are increasing the number of grains by fine ceramic particle size and 

high density ceramic sheets. (Fig.9) 

 

2.3 Oxygen vacancy Control Technology 

The mechanism of wear-out failures shown in Fig.10. When Ni electrode and the 

ceramic are fired in a low oxygen atmosphere, oxygen vacancies will occur. Because of 

Oxygen vacancies have positive charge, oxygen vacancies move to the cathode 

gradually under DC voltage condition. 

When a certain energy level is exceeded, electrons are supplied by Schottky emission 

and deteriorate insulation resistance, finally becoming a wear-out failure. 

Fig.9 
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  Fig.10 Improvement of micro structure to prolong wear-out  

 

Fig.11 shows oxygen vacancies before and after high temperature load testing by 

Cathode Luminescence.  We confirm that vacancies moved to the cathode side. 
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         Fig. 11 Observation of oxygen vacancies under high temperature load condition 

 

Fig.12 is an image diagram for the suppression of the movement of oxygen vacancies. 

Oxygen vacancies are generated during firing. Therefore, rare-earth doping is used to 

displace Ba site of ceramic structure, generate a Barium vacancy. Oxygen vacancy 

joins Barium vacancies and oxygen vacancies movement will be suppressed. 

However, oxygen vacancies can move to the cathode side under high temperature and 

high voltage conditions during very long time operation. 
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   Fig.12 Effect of suppressing oxygen vacancy(v”o) movement by Rare earth doping 

 

 

3. Conclusion 

In summary that so far, the first thing you need is uniformity. This is the technology 

required for the raw material sheet internal electrode, high-density sheets, and grain of 

ceramic. 

Secondly, a technique to control the grain boundaries and the characteristics of the 

ceramic. 

Thirdly, it is possible to control the internal stress and calcination reaction process. 

Fourth, processing technology to prevent contamination by foreign material, is required 

to control defect rates in order of ppb or less. 

Fifth, the development of a material having a high dielectric constant. 

It is not only this, but above is the main technology to achieve a small size, high 

capacity and high reliability capacitor. 

 


