Space Passive Component Days, 1st International Symposium

ESA/ESTEC 24-26 September 2013

The most important thing we build is trust

AEROSPACE AND SECURITY DIVISION • Aerospace Communications • Antenna Systems

- Commercial System
- Tactical Communications
 and Surveillance

DEFENCE SYSTEMS DIVISION • Defence Electronics

MISSION SYSTEMS DIVISION • Aviation Services • Life Support • Mission Equipment

Space L-Band High Power Ferrite Isolator

<u>A. Verger¹</u>, E. Laroche¹, J.-L. Roux² ¹ Cobham Microwave, France ² CNES, France

- Ferrite Isolators
- Objectives of work
- Design
- Test results
- Conclusion

- Isolators are required at the output of the SSPA for protection
- Performance which must be able to handle the full output power

- The signal passes from port1 to port2 with low loss called "Insertion loss" : S₂₁
- In the reverse direction, from port 2 to port1, the signal passes with high loss. As such, it's used to "Isolate" one RF device from another: S₁₂
- The chip load is dimensioned to present a good VSWR within the operating frequency and temperature range

Coaxial Ferrite Isolator Principle

The three port junction function is made by a strip line structure

Coaxial Ferrite Isolator Principle

- The three port junction function is made by a strip line structure
- Ferrite disks are used. The ferrite material used shows non linear effects, a good stability in the temperature range and low insertion losses.

Coaxial Ferrite Isolator Principle

- The three port junction function is made by a strip line structure
- Ferrite disks are used. The ferrite material used shows non linear effects, a good stability in the temperature range and low insertion losses.
- The gyromagnetism effect in ferrite material is a phenomena which does not need any power supply : only a permanent magnet included in the isolator provide the necessary field to create the circulation.

Context of this work

- In recent years, power capability of amplifiers used in telecommunication or GPS payloads increased continuously => Consequently, ferrite isolators, which protect amplifiers, must be designed to be used at such power levels
- This work belongs to a CNES funded R&T project which objective is to design, realize and evaluate L-band isolator with power as high as 200W-CW

Frequency (MHz)	Bandwidth (MHz)	Power (W)
1150 - 1250	100	200
1150 - 1200	50	200
1550 - 1650	100	150
1550 - 1600	50	150

- TNC connectors
- Operating temperature: -30°C +85°C
- Shielding effectiveness > 75 DBi
- Glitch free
- Insertion loss < 0.25 dB
- Isolation > 20 dB
- Return loss > 20 dB

Isolator design

- Many aspects according to space requirements (ESCC3202 and major payload manufacturers), are taken into account to design isolators that will give the best tradeoff to users :
 - Electrical performances
 - Mechanical
 - Multipaction
 - Thermal

Thermal analysis: nominal condition for 200W COBHRM

Thermal analysis: short circuit condition for **COBHAM** 200W

Surface	Temperature Max (°C)	Temperature Average (°C)	Maximum Allowable Temperature (°C)
TRP	8	5	
Chip	123.4	113.5	127
Ferrites	112.7	107.7	220
Stripline	117.8	114.4	300
Connector's central part	109.3 Input 126.5 Output	109.2 Input 126.4 Output	165

Isolator tests

Frequency (MHz)	Bandwidth (MHz)	CW-Power (W)	Glitch test	Power test	Temperature cycling (200 cycles)	EMC
1150 - 1250	100	200	Х			Х
1150 - 1200	50	200		Х	Х	
1550 - 1650	100	150			Х	Х
1550 - 1600	50	150	Х	Х		

Electrical measurement at ambient temperature

COBHAM

Electrical measurement at -30°C

Electrical measurement at +85°C

Glitch test bench

- Glitch phenomena:
 - Insertion loss discontinuity, step or spike shall exceed 0.05dB.
 - The sum of consecutive Insertion loss discontinuities, steps or spikes in any one temperature cycle shall not exceed 0.05dB in any direction.
 - Insertion Loss measurements shall exhibit a maximum change of 0.05dB during any given period of 1 minute during cycling. Gradual variation of Insertion Loss due to change of temperature shall be excluded when assessing this change.
- 2 cycles: +85°C/-30°C
- Dwell time at each extreme temperature: 15 minutes

EMC Test

Power Test: Cobham facilities

Frequency	VHF-UHF	L-band	S-band	C-band	Ku-band	KA-band
band	1 - 500 MHz	1 - 2 GHz	2 - 4 GHz	2.5 - 8 GHz	8 - 18 GHz	18 – 21.7 GHz
Maximum power	25 – 50 W	500 W	110 W	500 W	250 W	250 W

Power Test sequence

Power Test: short circuited

Temperature cycling

Conclusion

- Conception, Fabrication and Measurement of L-band High Power Isolator up to 200 W
- Objectives:
 - TNC connectors $\sqrt{}$
 - Operating temperature: -30°C +85°C √
 - Shielding effectiveness > 75 dbi $\sqrt{} \ge$ 77 dBi
 - Glitch free $\sqrt{}$
 - Insertion loss < 0.25 dB $\sqrt{}$
 - Isolation > 20 dB $\sqrt{}$
 - Return loss > 20 dB \checkmark
- Next steps:
 - Evaluation of this isolators
 - Design of High Power Isolator in S- and C- band: ESA contract

Thank you for your attention