

Carbon Nanotube Low Voltage Differential Signal Cables for Space Applications

Marco van der Stelt, Account Manager Stefanie Harvey PhD, Senior Principal Scientist TE Connectivity, Global Aerospace, Defense & Marine

EVERY CONNECTION COUNTS

Agenda

- CNT Introduction
- CNT for Wire and Cable
- CNT Characterization
- CNT Prototype Line
- CNT Termination
- Preliminary Electrical Characterization
- Conductivity Comments
- Summary
- Questions & Answers

CNTs: A Brief Introduction

Carbon Nanotubes - Visualization

Roll up a single atomic layer of graphite

CNT Manufacturing Methods

CNTs are manufactured by high temperature processes

Plasma Enhanced CVD

Thermal Reactor

Laser Ablation

CNT Manufacturing Methods (2 of 2)

Temperature, catalyst, and reactor chemistry alter the CNT physical structure and conductivity

Physical Structure

- Single walled
- Dual/Few Walled
- Multi-Walled

Conductivity

- Metallic
- Semiconducting

Aspect Ratio Creates Unique Properties

- CNTs are few nanometers in diameter and up to mms in length; this aspect ratio creates unique material properties
- For comparison, imagine re-bar
 1cm in diameter and 1km in length

	CNT	Steel	PbO	AI
Young's Modulus (TPa)	.8 – 1.4	0.3	.36	.07
Tensile Strength (GPa)	63	2	5.7	0.3
Density (g/cm³)	1.4	8	1.6	2.7
	CNT	Cu	Ag	AI
Electrical Resistivity ($\mu\Omega$ cm)	1	1.7	1.55	2.7
	CNT	Diamond		
Thermal Conductivity (W mK)	3000	2000		

- Single CNTs are strong with high thermal and electrical conductivity
- As a non-metallic "conductor" CNTs are also corrosion and fatigue resistant.

What's the Catch?

- Single CNT material properties outperform steel in strength, copper in electrical conductivity & diamond in thermal conductivity
- Properties degrade in assemblies of CNT

Challenge: How to maintain properties while changing scale 8 orders of magnitude

CNT for Wire and Cable

Market Drivers: Size Weight and Power (SWaP)

Smaller Size Reduced Weight More Power Traditional SWaP **More Reliability More Bandwidth Customer Needs** A customer suggested **Unstated Driver** the acronym should be "\$WaP"

CNTs and SWaP

√Size

- Mechanical strength and fatigue resistance allow down-gauging
- Flexibility equivalent to textile threads

✓ Weight

- 30% to 70% savings based on cable construction
- ✓ Reliability
 - Flex bend test cycles exceed 1.5M
 - Corrosion and flame resistant (stable above 300C)

- x Power
- ~ Bandwidth
 - Power and bandwidth affected by CNT conductivity

?Cost

- Cost changing rapidly

Weight Savings Example

HALE UAV~ 385 kilograms of cable on board All CNT Cables Saves ~ 181 kg CNT Shield Alone Saves ~ 136 kg

Large Tactical Fighter ≈ 24 km cable on board All CNT Cables Saves ~ 896 kg CNT Shield Alone Saves ~ 535 kg

CNT Characterization

CNT Materials Characterized and Application

Format(s)	Manufacturer	Materials	Application
Yarn	US Vendor A	CNT	
Fibre	EU Vendor B	CNT	Centre Conductor
Fibre	EU Vendor C	CNT	
Таре	US Vendor A	CNT	
Fibre	US Vendor D	CNT/Glass Fibre CNT/Carbon Fibre	
Sheet	US Vendor D	CNT Composite	Shielding
Sheet	US Vendor E	CNT	
Таре	US Vendor F	CNT	
Powder	US Vendor G	CNT	

Additional suppliers are also being evaluated.

Materials Characterization Testing

Test	Format	Metric of Interest
Raman Spectroscopy	Yarn, Fibre	Carbon Nanotube Structure
Thermogravimetric Analysis	Yarn, Fibre	Composition
Scanning Electron Microscopy	All Formats	Morphology
Electron Dispersive Spectroscopy	All Formats	Composition
Tensile Strength	Yarn, Fibre	Mechanical Properties
Tear Strength	Tape, Sheet	Manufacturability
Conductivity	Yarn, Fibre	Electrical - DC
Impedance	Yarn, Fibre	Electrical - AC
Shielding Effectiveness	Sheet	Electromagnetic Interference Shielding

Shielding Effectiveness at 4 GHz (1 of 2)

Test Method: ASTM D4935, 1 – 8 GHz

- Areal density (left Y axis)
- Shielding Effectiveness (right Y axis)

Summary: Very good SE at 1-8GHz using CNTs

Prototype Construction: Twisted Pair (1 of 2)

Weight Savings Case Study: 69% Using All CNT construction

Prototype Construction: Twisted Pair (2 of 2)

Word Test

Copper Databus Cable 12.995 Voltage Drop CNT Databus Cable 13.067 Voltage Drop

Summary: Performance comparable to standard cable using CNTs

Prototype Construction: IEEE 1394 and RG-218

- CNT/Fiber Hybrid Material
- Braided Shield on IEEE 1394 core (FireWire)
- Good SE performance
- Prototypes have been flight-tested

Cable Shielding – Flight Cables Constructed from CNT/Fiber

Surface Transfer Impedance versus Frequency

Acceptable Performance at 10% or More Weight Savings

CNT Prototype Line

Prototype Development Line

HEPA Filtration

Braider in Controlled Environment

Twin-Screw Extruder

3rd party air sampling indicates no airborne CNT release

MIL STD 1553 Prototype

Prototype Assembly Weight Breakdown

NA	CNT Twisted pair with CNT Shield	6.75	meter	6.68	45.09
D-600-DBS-0047	1 Stub Coupler	1.285	part	2	2.57
NA	1 Stub Coupler Enclosure	1.365	part	2	2.73
D-600-DBS-0049	2 Stub Coupler	1.996	part	2	3.992
NA	2 Stub Coupler Enclosure	2.028	part	2	4.056
NA	Terminator Resistor 77 Ohm w enclosure	3.356	part	2	6.712
1532209-1	Micro-D Nickel Plated Plug	1.64325	part	8	13.146
1532187-1	Micro-D Nickel Plated recepticle	1.682875	part	0	0
D-094-05-10-03-01	Gold Plated Crimps	0.192	part	42	8.064
D-436-36	Miniseal (red 22-26AWG)	0.1945	part	42	8.169
S0175-3-01	Shield Terminator	0.4278	part	20	8.556
RNF-100-1/4-9	1/4" white heat shrink tubing	9.517	meter	3	28.551
RNF-100-3/8-9	3/8" white heat shrink tubing	12.579	meter	1	12.579
NA	Coupler CNT shield + kapton tape	1	part	4	4
				Total	148.22

6.75 m CNT Twisted Pair with Stubs, Micro-D, and Terminators = 148g *Copper 1553B cable without terminations/coupler* = 150g

CNT Termination

All CNT MIL STD 1553 Cable Construction

- CNT yarn with ETFE extrusion
- CNT tape shielding
- Standard couplers

CNT Termination (1 of 2)

Standard Terminations Sufficient

- No contact resistance issues due to inherent CNT resistance
- Mechanical crimp sufficient
- Soldering requires modification of CNT material

CNT and Cu F Crimp Cross Section

CNT O Crimp Successive Cross Sections

Plated CNT Yarn

CNT Termination (2 of 2)

Crimp Tensile Test Results

- CNT yarn fails before pull out
- Values consistent with CNT yarn tensile strength

Tensile Test Set-Up

Sn Plated O Crimp (24 AWG Yarn) Average Load to Failure = 78.7N +/- 0.6N

Preliminary Electrical Characterization

Rise Time Optimization Sample Descriptions (1 of 2)

- All cables approximately 24 AWG
- Customer also sought diameter reduction
- Shield variation
 - -CNT (tape)
 - Hybrid CNT tape + Cu Serve shield
 - Copper Braided Shield
- Dielectric variation
 - ETFE
 - Foamed FEP

Rise Test Results:

Cable	Construction Weight (g/m) / (lb/kft)	Rise Time at 1MHz (ns/ft)	
1. CNT Conductor, ETFE Dielectric, CNT Tape Shield	9.06 / 6.08	2.066	
2. Cu Conductor, ETFE Dielectric, CNT Tape Shield	18.51 / 12.43	0.449	
5. Cu Conductor, foamed FEP Dielectric, Cu Braided Shield	25.94 / 17.53	.00027	

Pseudo Eye Patterns:

Differential square wave input (5ns rise time) Cable output waveforms

1. CNT Conductor, CNT Tape Shield(5.11m)

2. Cu Conductor, CNT Shield (1.84m)

3.Cu Conductor, Cu Braid Shield(5.11m)

All CNT construction versus all Cu provides a 64% weight reduction with acceptable signal loss for low-bandwidth applications.

Conductivity Comments

Conductivity Improvements

TE has sponsored research into CNT conductivity improvement.

Conductivity: Networks versus Individual Tubes

- Traditional CNT conductivity models are based on few CNT systems
 - Ballistic conduction
 - Quantum tunneling
- Macroscopic format are billion/trillion CNT networks
 - Tunneling at junctions vs contact resistance at junctions
 - Network morphology plays a role

Network morphology can influence CNT conductivity by three orders of magnitude.

Summary

Summary

- CNT materials promising for SWaP
 - Shielding (all cable types)
 - Data Communication
- Current CNT macroscopic materials not sufficiently conductive as *centre conductor* for all cable

applications

- Co-axial Cables
- Power Cables
- Standard Terminations are Acceptable
- Prototype Line on Existing W&C Equipment

The type of CNT material used for a given application is a balance of required **conductivity**, **cost**, and **availability**.

ESA-ESTEC Passive Component Days 2013

THANK YOU Questions?