PROTON IRRADIATION FACILITY

- ► Two major changes in 2000
- ▶ Radiation effects in electronics
- **▶** Simulation of proton space environment
- ▶ Source of mono-energetic proton beams
- ▶ Calibration of particle detectors
- ▶ Operates since 1992
- ▶ User friendly and commonly available

MAIN FEATURES REMINDER

Energy range:

50-300 MeV (9-60 MeV LI) - PKC2 6-71 MeV - NFB

Maximum beam flux:

10⁵-10⁸ p/sec/cm² - PKC2 10⁹ p/sec/cm² - NEB

Beam profiles:

Gaussian $\sigma \cong 6$ cm or flat - PKC2 Flat $\phi \cong 6.0$ cm - NEB

Irradiation takes place in air

Sample mounting frame attached on XY table (can be rotated)

Sample test board as in SEU-Brookhaven and HIF-Brussel

Automated Data Acquisition System

OPERATION in 2000 - SUMMARY

 Irradiation period extend 2 Feb - 15 Dec
Number of experiments 42
 Participating research groups 15
 Days with beam 71 (+6)
• Beam blocks total
• <u>Beam shifts</u> 89½ (+ 6·½ +)
• Setup shifts ca. 28

PSI Selected Experimental Facilities

Medicine 1 Isotope Production IP2

- 2 Eye Treatment OPTIS 3 Proton Therapy Gantry
- Nuclear Physics and Radiochemistry
- Particle Physics
- Solid State Physics and Materials Science

PIF Station PKC2 High Energies

Old PIF NA2

Old PIF OPTIS

PIF Station NEB Low Energies

PKC2 Hall with PIF

New Experimental Sites

Portable!

PKC2 IC and Degrader

PKC2 XY-table, Laser and Beam Dump

PIF USERS in 2000

- " ESA / ESTEC, EU
- " PSI, Villigen
- " ETH, Zürich
- " University of Bern
- " ABB Semiconductors, Lenzburg
- " Contraves Space, Zürich
- " CERN, Genf

- " HIREX, France
- " TRAD, France
- " ALCATEL, France and Norway
- " ASTRIUM, France and Germany
- " SAAB Ericson Space, Sweden
- " GSFC / Uni Berkeley, USA
- " Marconi Applied Technologies, UK

ESA EXPERIMENTS at PIF in 2000

WORK ORDER 15

- Proton irradiation of THOMSON photodiodes and MIPAD photodiodes
- Proton irradiation of SAW filters
- Proton irradiation of non-linear crystals
- Proton irradiation of various laser diodes

WORK ORDER 16

- Proton irradiation of ACTEL FPGA RT54SX16
- Proton irradiation of various Optocouplers types
- Proton irradiation of SIEMENS LabTop
- Proton irradiation of various SRAM types

PIF EXPERIMENTS BY OTHER USERS

- IREM radiation monitor calibration for INTEGRAL
- SREM calibration for PROBA and ROSETTA
- Radiation damage of various CCDs
- Activation measurement of Ta, Ti, Cu, W, and Al
- Radiation effects in power MOSFETs
- Radiation damage in novel solar cell technologies
- Dose effects in power supplies for CMS muon chamber and calorimeter
- Proton test of video-chain electronics (compressor and emitter)
- SEU characterisation of various electronic devices.
- Proton test of Space Robotronic Controller
- Proton irradiation of AD Converter
- Gamma/electron tests of SREMs

Proton Irradiation of THOMSON and MIPAD photodiodes (ESA ESTEC)

Irradiation setup in PIF OPTIS facility

DUTs -

12 THOMSON photodiodes with various epitaxial layers,

6 THOMSON photodiode arrays

2 MIPAS photodiodes

1 MIPAS laser diode

Setup -

Several samples irradiated simultaneously if possible. Devices unbiased, grounded, facing beam.

Exposures -

Two campaigns performed.

Energy: 6 and 30 MeV

Fluency: from 10⁷ to 10¹² p/cm²

Fluxes: from 10⁶ up to 5·10⁸ p/cm²

Analysis -

Performed by ESA-ESTEC

Calibration of SREM Batch (CSAG-ESA-PSI)

Standard Radiation Environment Monitor

SREM – developed in partnership: ESA, PSI and Contraves Space AG. Monitors for PROBA and ROSETTA satellites manufactured by Contraves AG, calibrated by PSI and delivered to ESA.

<u>Setup</u>

Example see Photo

Procedure -

- Short Functional Test, ⁶⁰Co and Cosmic Ray check
- II Low energy response at 0°
- II-a Thresholds determination
- III Detector area measurement
- IV Dead-time determination
- V Full response calibration/set of energies and angles

Analysis -

Simulations done for exactly the same energies as in experiment. Angular positions changed for the whole set of proton incidence angles.

Conclusions -

Two tested SREMs meet their specifications.

Agreement experiment-simulations in general very good.

PROBA SREM mounted on PIF-PKC2 XY-table

Experiment and Modeling - comparison

PROTON IRRADIATION **F**ACILITY

Background Studies for HESSI Project -SAA Induced Radioactivity (PSI-GSFC-UCB)

HESSI - High Energy Solar Spectroscopic Imager

- 28 March 2001 Launch

Activation - mostly metals surrounding Ge-spectrometer

- predominantly protons in SAA Radiation

Irradiated elements - Al, Ti, Cu, W and graded-Z shield plates: Sn-Fe-Ta (20x10x2 mm³)

Exposures -Single energies: 50, 100, 200 MeV, SAA spectrum: 30-300 MeV in 8 bins

Analysis -Sn-Fe-Ta: 40 gamma ray lines found from 18 radioisotopes with $T_{1/2}$ from 8 min to 2 days. Total activity after SAA exposure test A=147 Bq/g

Gamma spectrum from Sn-Fe-Ta (1g) exposed to SAA proton spectrum. $F=5.8 \cdot 10^{10} \text{ p/cm}^2 - 100 \text{ days in orbit;}$

Activity changes during the flight activation gain during SAA passing

Proton Radiation Hardness Characterization of Solar Cells - (ETHZ-PSI)

<u>Irradiated elements -</u>

Solar cells in blocks of 12,

Al shielding to determine energy

Setup and Exposures -

Energy: 0, 5, 10, 15 MeV (all at once using degraders)

Fluency: 10¹¹, 10¹², 10¹³ p/cm²

4 cells exposed to single energy and fluency

Analysis -

Done by ETH Zurich;

Results -

Preliminary data promising (TBP),

New measurements are planned

Solar Cells manufactured by ETHZ

PSI / PIF Operation 2001

- Low energy (Injector 1) production 1 March
- 1st PIF NEB / OPTIS week 12 March
- High energy (Inj. 2, Ring) production 2 May
- PIF PKC2 / Proton Therapy operation 14 May
- Low energy area Collimators, cables, full XY automation
- High energy area New controllers, software, analysis SW
- Specification and design of new irradiation area / PROSCAN
- First irradiation reserved: PSI, ETHZ, Contraves Space, ESA

New Biomedical Cyclotron Project - PROSCAN

PROSCAN!

Master Schedule

PROSCAN PIF Specifications:

Draft 0 of PIF area in PROSCAN

- Cyclotron Energy 250 MeV
- Intensity in PIF area 10 nA
- PIF Energies: 250 and 70 MeV
- Achromatic Beam
- Sweeper X and Y Magnets
- Vacuum System
- Water Supply
- He Recovery System
- Small Crane
- Network, Cables Infrastructure etc.
- Space and Biomedicine Utilization