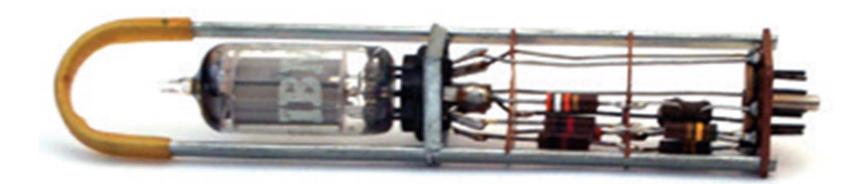
Increased Reliability and Quality with the Assistance by IPC Standards!

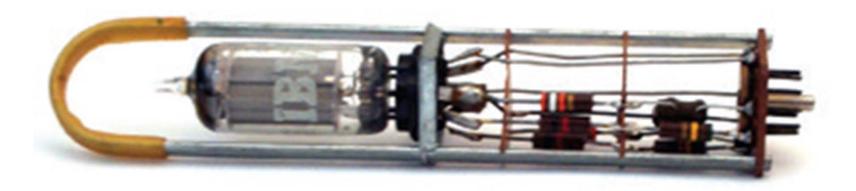
EMPPS May 20, 2014 Lars-Olof Wallin IPC European Representative

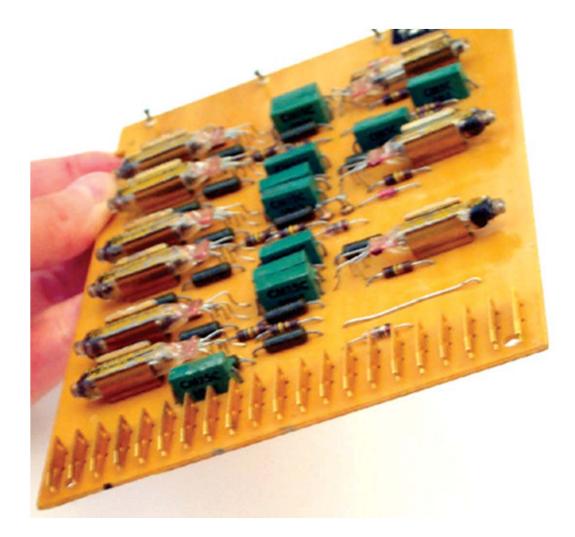
Association Connecting Electronics Industries

Have we meet before?

Agenda

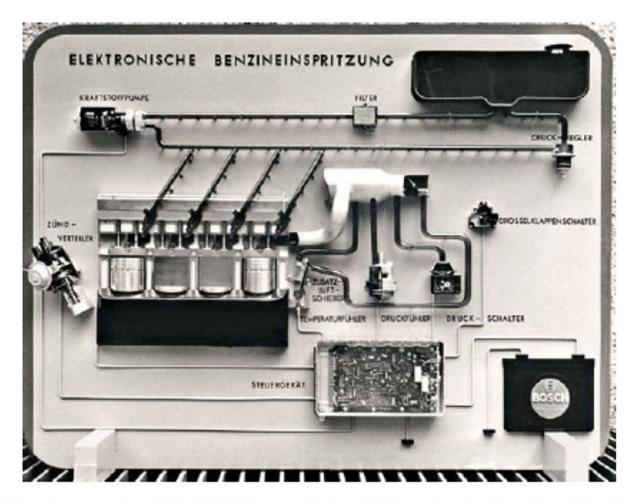
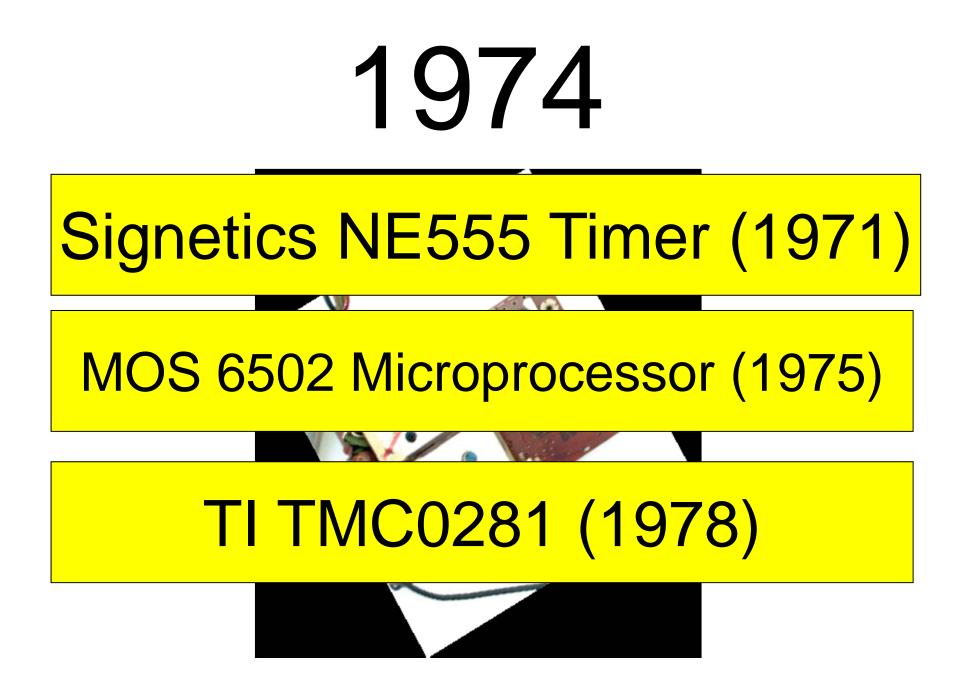

Part 1: Historical and future electronics.Part 2: New Demands and Challenges?Part 3: How can IPC assist?Part 4: Need for an IPC Checklist?Part 5: Summary and Conclusions.

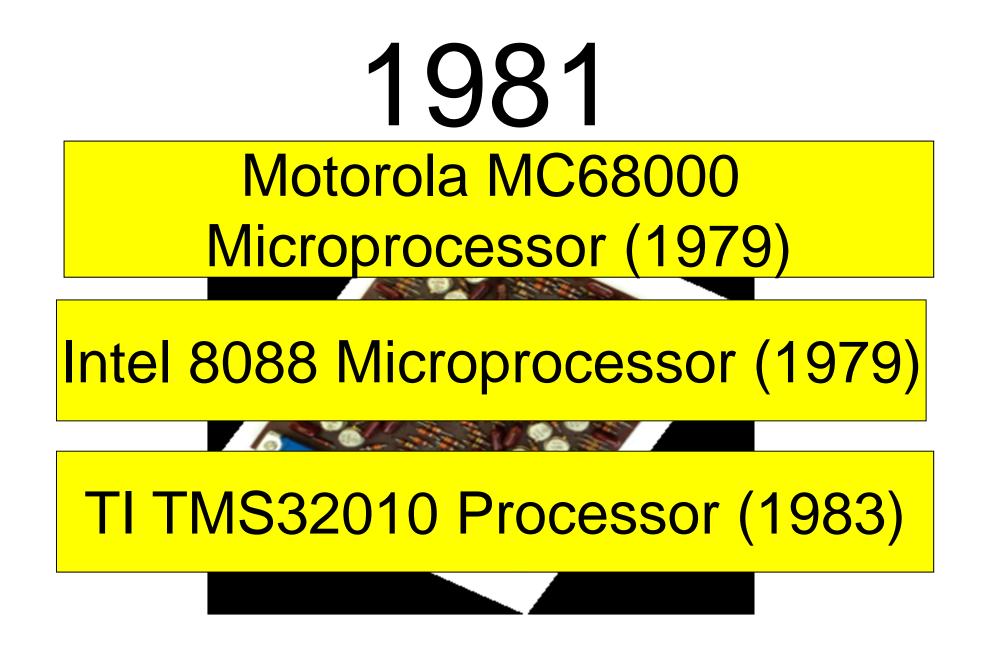

Association Connecting Electronics Industries



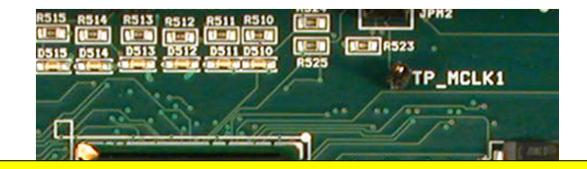
IPC Part: 1 Historical and future electronics?

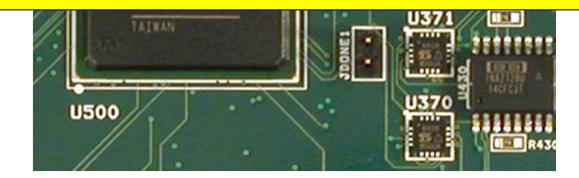
When will the development end?

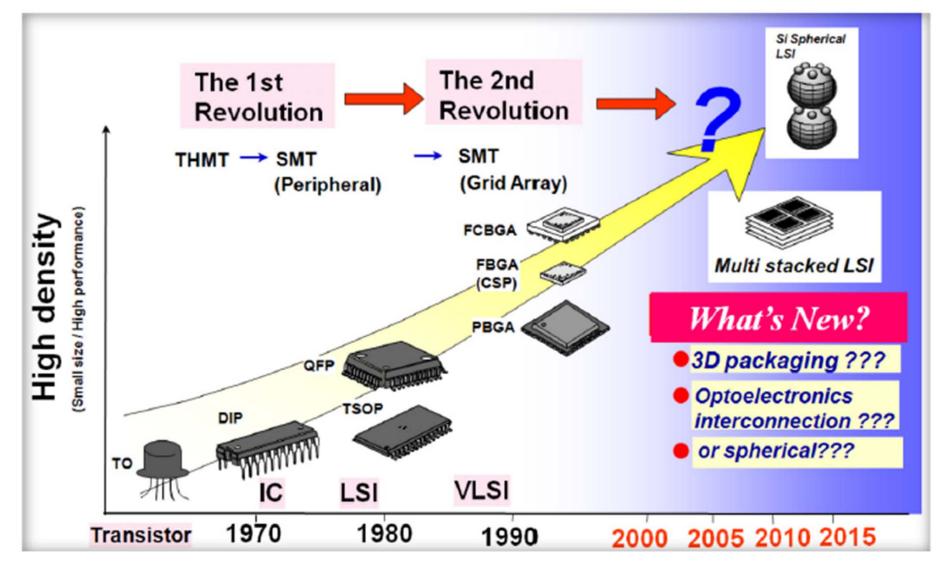

Figure A2-1 – Schematic of the 1967 Bosch "Jetronic" Electronic Gasoline Injection System

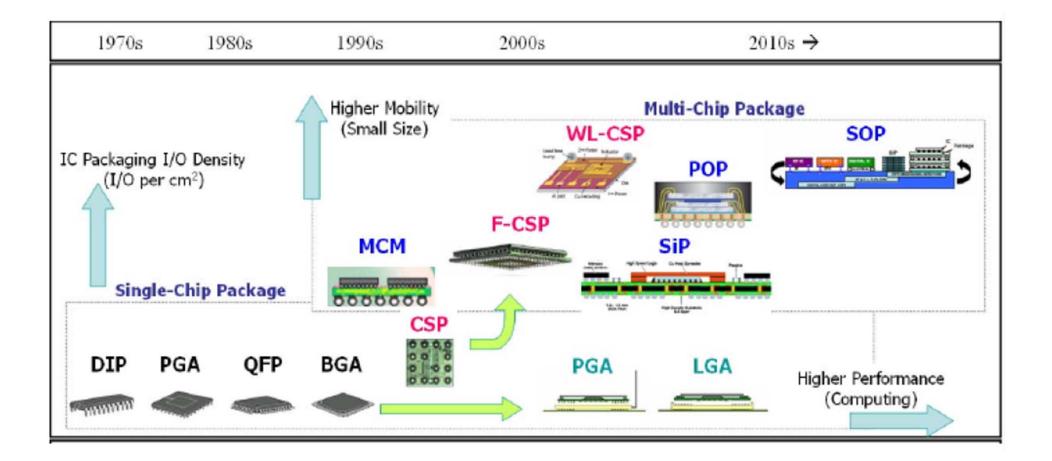
Fairchild Semiconductor µA741 Op-Amp (1968)



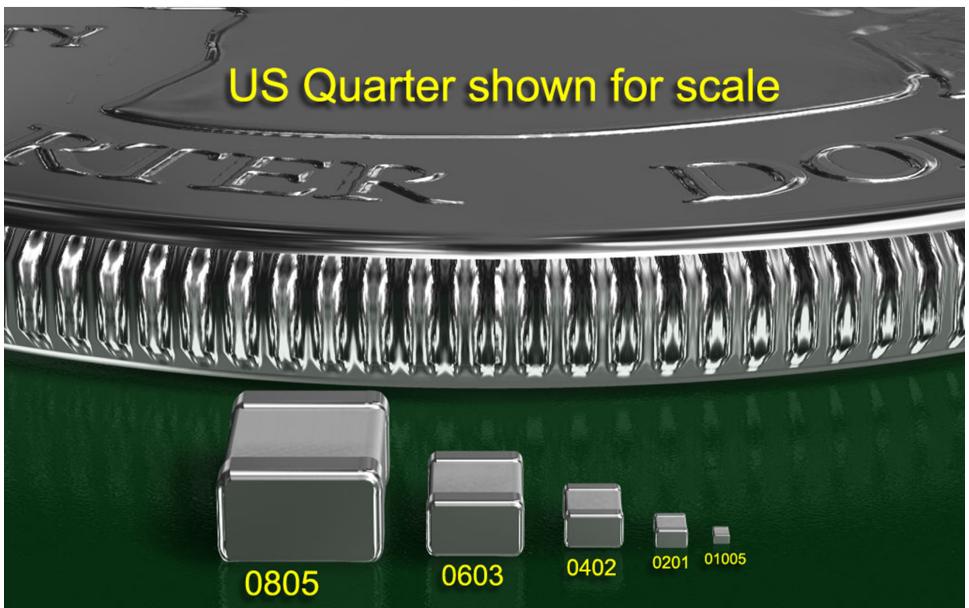

Sun Microsystems SPARC Processor (1987)

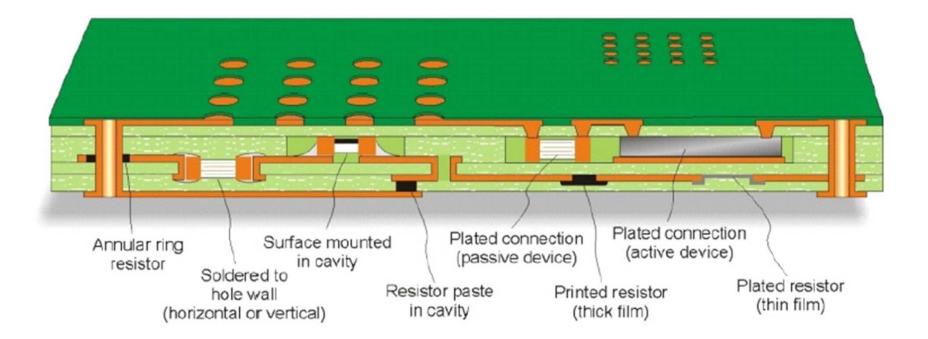
Microchip Technology PIC16C84 Microcontroller (1993)


Xilinx XC2064 FPGA (1985)

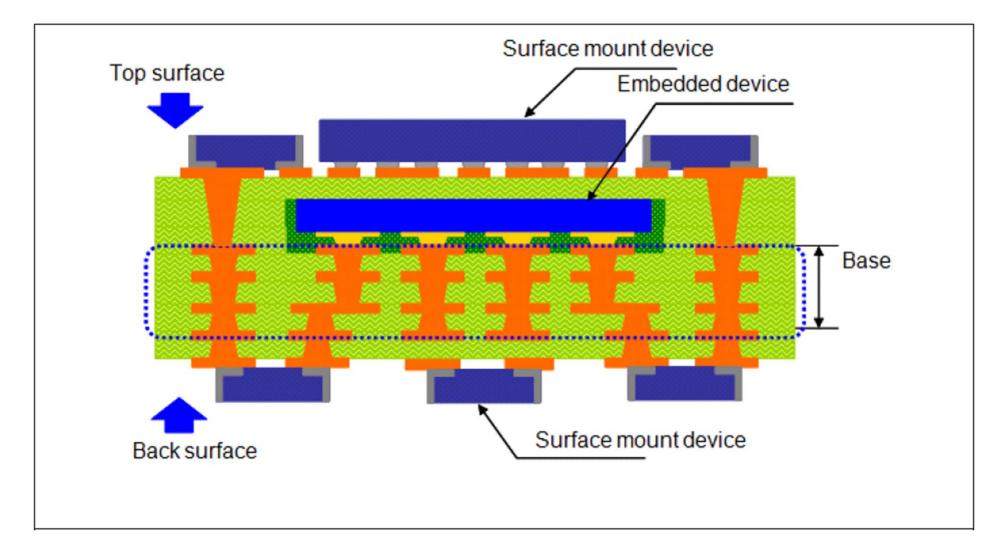

With New Components we got new Electronics!

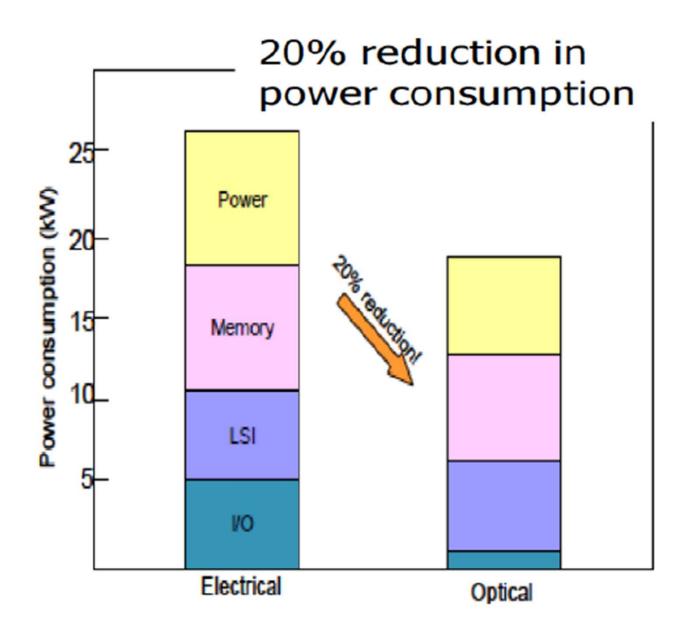
It will continue!

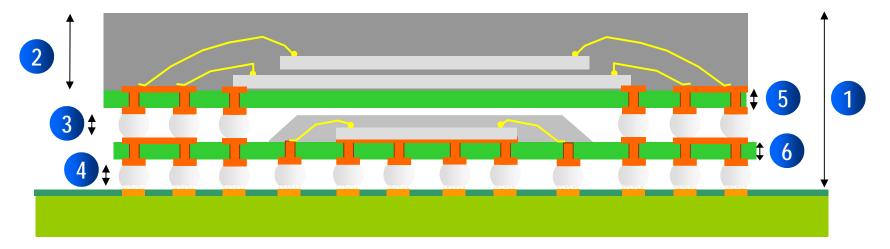

Japan Jisso Technology Revolution toward the 21st Century



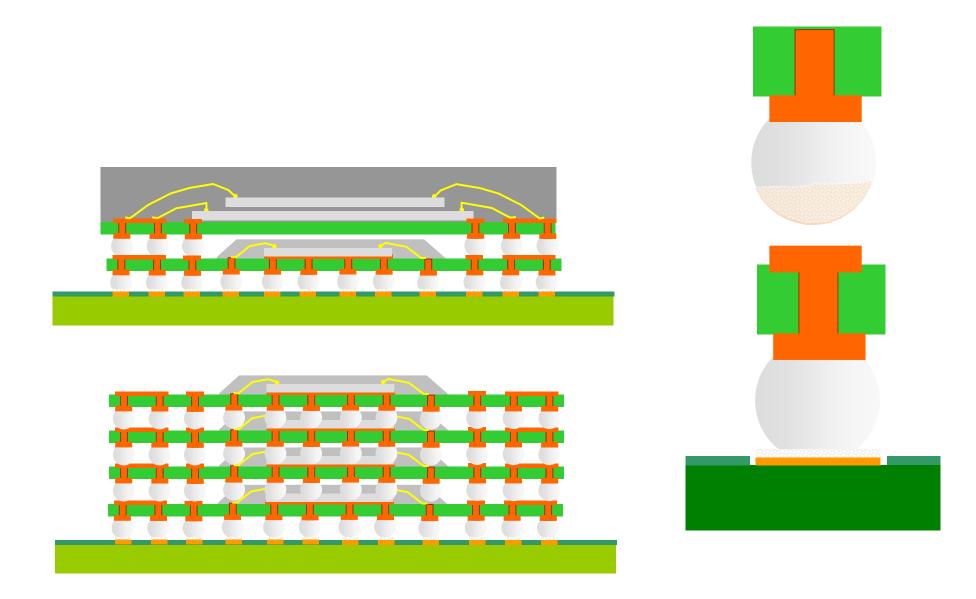
Electronic Packaging Evolution Trends

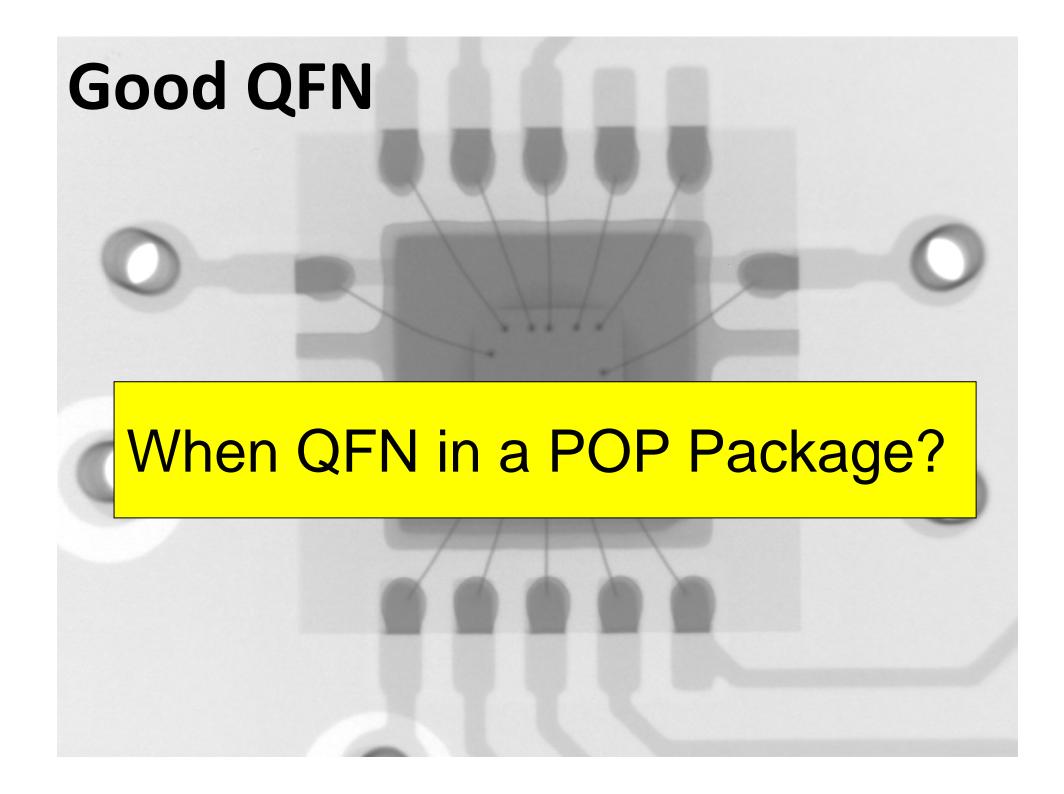



0201 Fysical Size


Typical structure of completed device embedded board

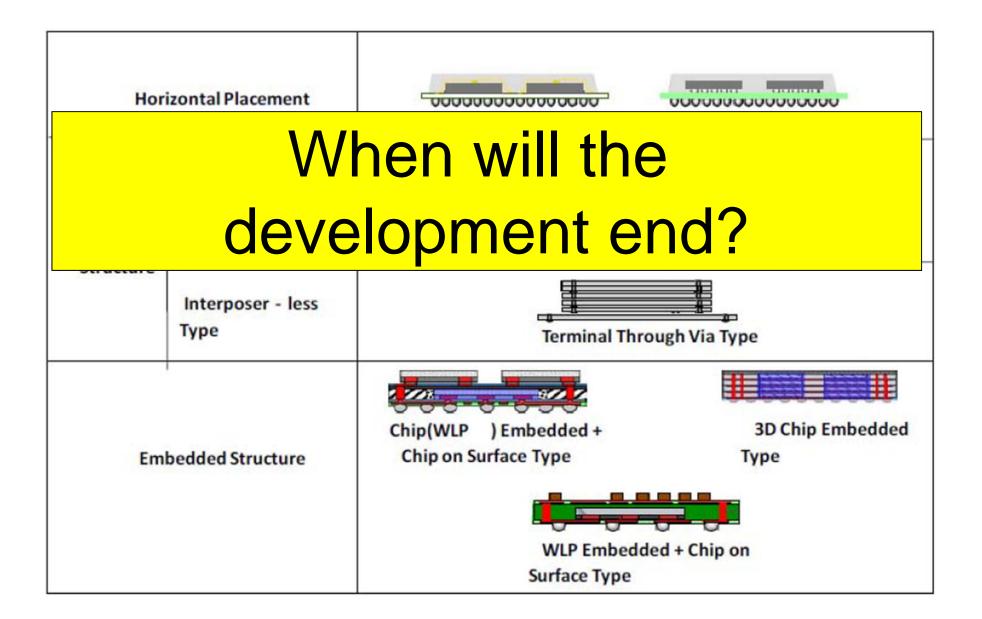
POP Package General Dimensions

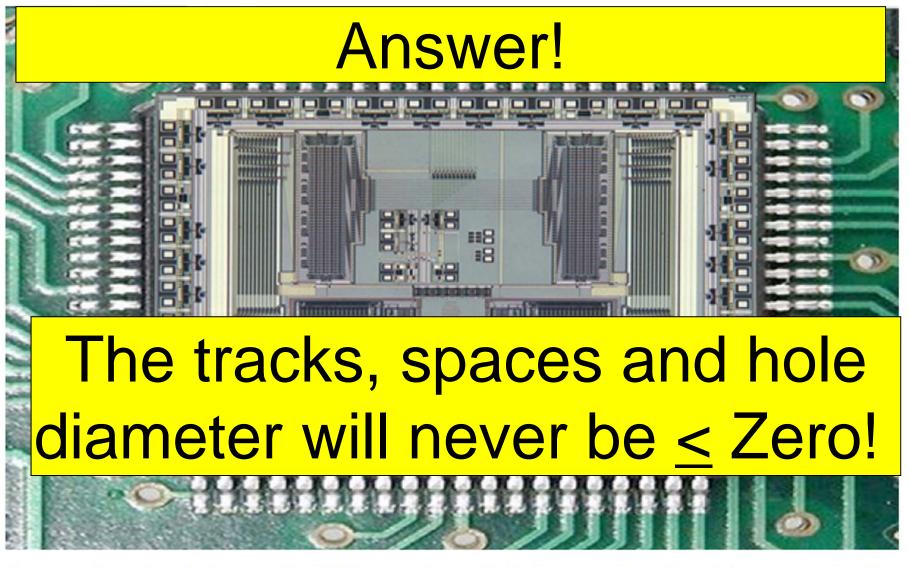



Package height 1.5mm 0.060"

- Top package mould 0.46mm 0.018"
- Second package ball height 0.30mm 0.012"
- First package ball height 0.20mm 0.008"
- Second package substrate 0.21mm 0.009"
- First package substrate 0.30mm 0.012"

JEDEC 95


Assembly Process for POP Package on Package



Components 1968-2008

- What progress have been done in 40 years?
 - 1968: 12 transistors in one IC.
 - 2008: 1 050 000 000 transistors in one IC.
 - 2013: More!
 - 2020: Many More!!

Integrated Microcircuit Prior to Device Encapsulation

IPC Part: 2 New demands and challenges?

Which is the biggest challenge?

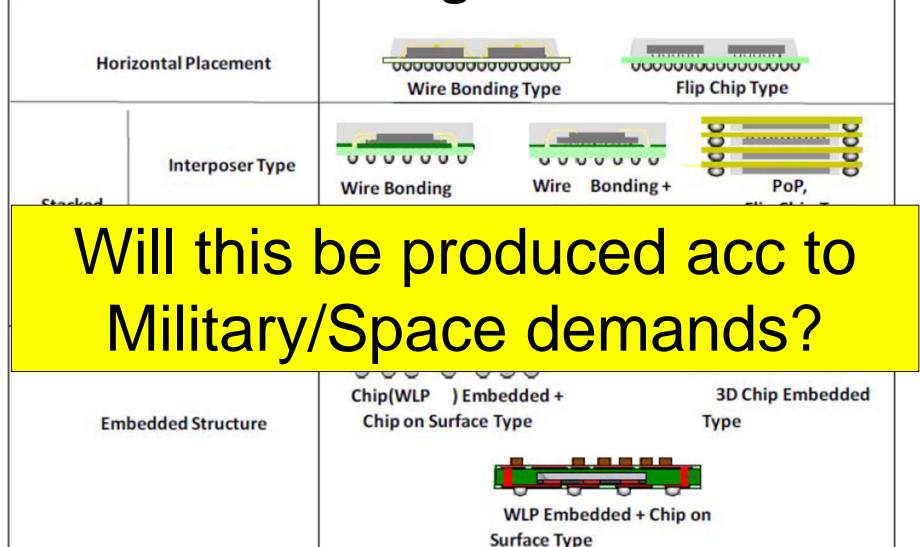
Product Description vs. End-Use Applications

End Use Application	Interposer	Module	Portable Board	Product Board	Backplane
1-Consumer	D	D	A/D	D	D
2-Computers and Peripherals	D	В	A/D	D	E
3-Telecomm	В	E	A	E	E
4-Commercial Aircraft	С	С	A/C		C/E
Compartment	В	В	A	E	E
6-Military (ground and shipboard)	С	С	A/C	C/E	C/E
7-Space	С	С	A/C	C/E	C/E
8-Military Aircraft	С	С	A/C	C/E	C/E
	B/C	C	C	B/C	B/E
10- Bio Medical & Life support	В	В	A/E	B/E	B/E

A=Hand Held; B=High Performance; C=Harsh Environment; D=Low cost/High Volume; E= Cost Performance

New Market Conditions!

 Prior releases of the Roadmap had greater emphasis on military applications


Which is the biggest challenge?

in advanced product development has declined. such that

Must the Space change to a lead free process??

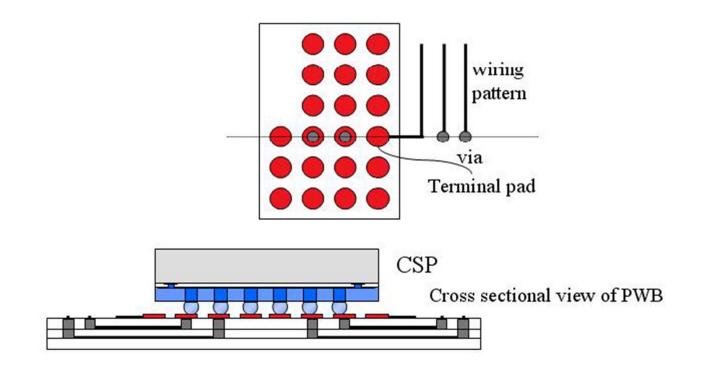
commiliee.

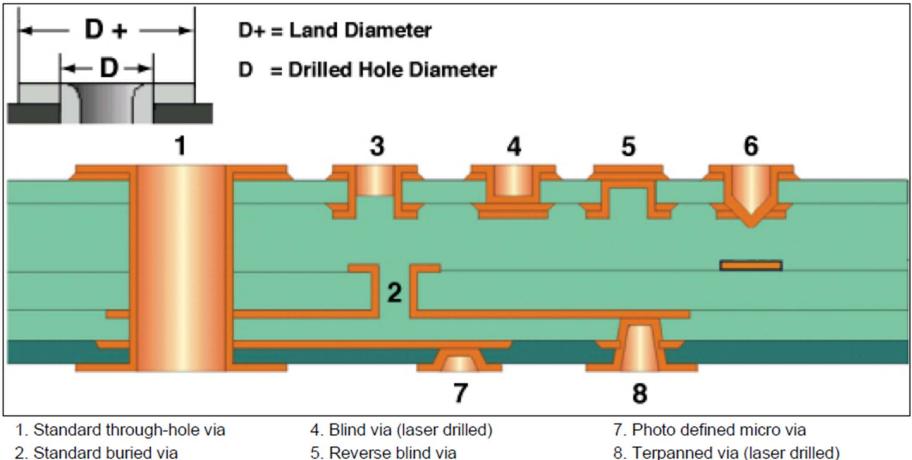
Representative SIP Types and Categories

Space needs/demands on PCBs

- 1. Advanced functions → Advanced Components
- 2. Advanced Components → Advanced CAD
- 3. Advanced CAD → Many layer and several via hole types (PTH_Micro_Blind and Buried)with This will not match!!
- 4. Robust Design acc to IPC-2221B and IPC-222A means IPC Class 3 and Level A.
- 5. Footprints acc to IPC-7351B Level A and 1752
- 6. Base Material acc to IPC-4101D/xxx

High Density Interconnection using Via in Pad Technology




Illustration of the design spacing for a 0,5 mm pitch BGA

Source: Happy Holden

Military needs/demands on PCBs

- 1. Advanced functions → Advanced Components
- 2. Advanced Components → Advanced CAD
- 3. Advanced CAD → Many layer and several via hole types (PTH, Micro, Blind and Buried).
- 4. Robust Design acc to IPC-2221B and IPC-222A means IPC Class 3 and Level A.
- 5. Footprints acc to IPC-7351B Level A and 1752
- 6. Base Material acc to IPC-4101D/xxx.
- 7. PCB production acc to IPC-6012C Class 3.
- 8. Quality demands according to IPC-600H Class 3.

Hole Characteristics

- 3. Semi-blind (semi buried) via
- 6. Controlled depth drilled via

Product Board Platform Roadmap

CHARACTERISTICS	PRODUCT BOARD 2013-2014	PRODUCT BOARD 2015-2016	PRODUCT BOARD 2017-2018	PRODUCT BOARD 2019-2023
Layers Range	4 to 36+	4 to 36+	4 to 36+	4 to 36+
Board Thickness	1.575 mm to 6.350 mm	1.575 mm to 7.7 mm	1.575 mm to 9.0 mm	1.575 mm to 9.0 mm
Board Size Range	75 mm to 400 mm per side	75 mm to 550 mm per side	75 mm to 700 mm per side	75 mm to 700 mm per side
Device Pitch	0.4 mm up to 1.5 mm	0.4 mm up to 1.5 mm	0.4 mm up to 1.5 mm	0.2 mm up to 1.5 mm
Typical Materials	FR4, HF FR4, Low-loss, Polyimide, Rogers, etc;SAC tolerant	FR4, HF FR4, Low-loss, Polyimide, Rogers, etc;SAC tolerant	FR4, HF FR4, Low-loss, Polyimide, Rogers, etc;SAC tolerant; RCC	FR4, HF FR4, Low-loss, Polyimide, Rogers, etc;SAC tolerant; RCC
Material Thickness	0.075 mm to 0.450 mm (not counting BC)	0.075 mm to 0.450 mm (not counting BC)	0.075 mm to 0.450 mm (not counting BC)	0.075 mm to 0.450 mm (not counting BC)
Via Stack	2	2	2; 4+ z stack	2; 20+ z stack
Buried Capacitance	YES, needed for Power Integrity	YES, needed for Power Integrity	YES, needed for Power Integrity	YES, needed for Power Integrity
Buried Components	EP resistors & capacitors	EP resistors & capacitors	EP resistors & capacitors	EP resistors & capacitors; optical paths
Power Dissipation	Can be very high, heat sinks-cooling schemes	Can be very high, heat sinks-cooling schemes liquid cooling	Can be very high, heat sinks-cooling schemes liquid cooling	Can be very high, heat sinks-cooling schemes liquid cooling
Voltages	Multiples up to 8	Multiples up to 8	Multiples up to 8	Multiples up to 12

Product Board Platform Roadmap

CHARACTERISTICS	PRODUCT BOARD 2013-2014	PRODUCT BOARD 2015-2016	PRODUCT BOARD 2017-2018	PRODUCT BOARD 2019-2023
Signal Integrity	Controlled impedances, long signal lengths; back drilling	Controlled impedances, long signal lengths; back drilling	Controlled impedances, long signal lengths; back drilling; z interconnect	Controlled impedances, long signal lengths; back drilling; z interconnect; optical interconnect
Typical Design Rules: L/S: Via/Pad:	0.075 mm to 0.150 mm/ 0.100 mm to 0.250 mm 0.100 mm to 0.250mm/ 0.200 mm to 0.450 mm	0.075 mm to 0.150 mm/ 0.075 mm to 0.250 mm 0.100 mm to 0.250mm/ 0.200 mm to 0.450 mm	0.075 mm to 0.150 mm/ 0.075 mm to 0.250 mm 0.100 mm to 0.250mm/ 0.200 mm to 0.450 mm	0.050 mm to 0.150 mm/ 0.050 mm to 0.250 mm 0.050 mm to 0.250mm/ 0.150 mm to 0.450 mm
Typical Through-holes	0.200 mm to 25.4 mm mounting & connectors	0.150 mm to 25.4 mm mounting & connectors	not used to 0.150 mm for signals up to 25.4 mm mounting & connectors	not used to 0.150 mm for signals up to 25.4 mm mounting & connectors
No. of Fabricators-Ww	~300 to 400	~320 to 450	~340 to 480	~350 to 500
Typical Components	Various, to large-high I/O BGAs of 2700 pins	Various, to large-high I/O BGAs of 2700 pins	Various, to large-high I/O BGAs of 2700 pins	Various, to large-high I/O BGAs of 2700 pins; optical support
Interconnect to Next Level Higher	Connector, pins, cables or fingers	Connector, pins, cables or fingers	Connector, pins, cables or fingers	Connector, pins, cables or fingers; optical cables
Typical Order Quantity	Few to Medium	Few to Medium	Few to Medium	Few to Medium

IPC Part: 3

How can IPC assist?

Demands for producing IPC Class 3?

Which IPC Standards does is most known?

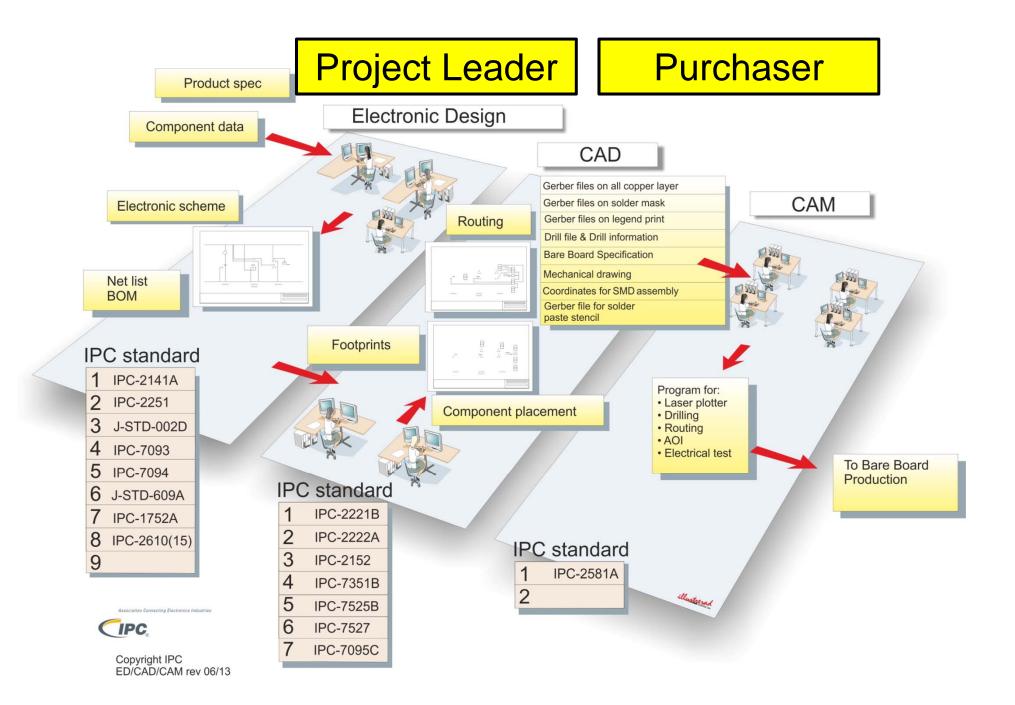
If yo II NO!! ording to ass 3 ved IPC Class 3?

You promised Class 3! But it is not IPC Class 3!!

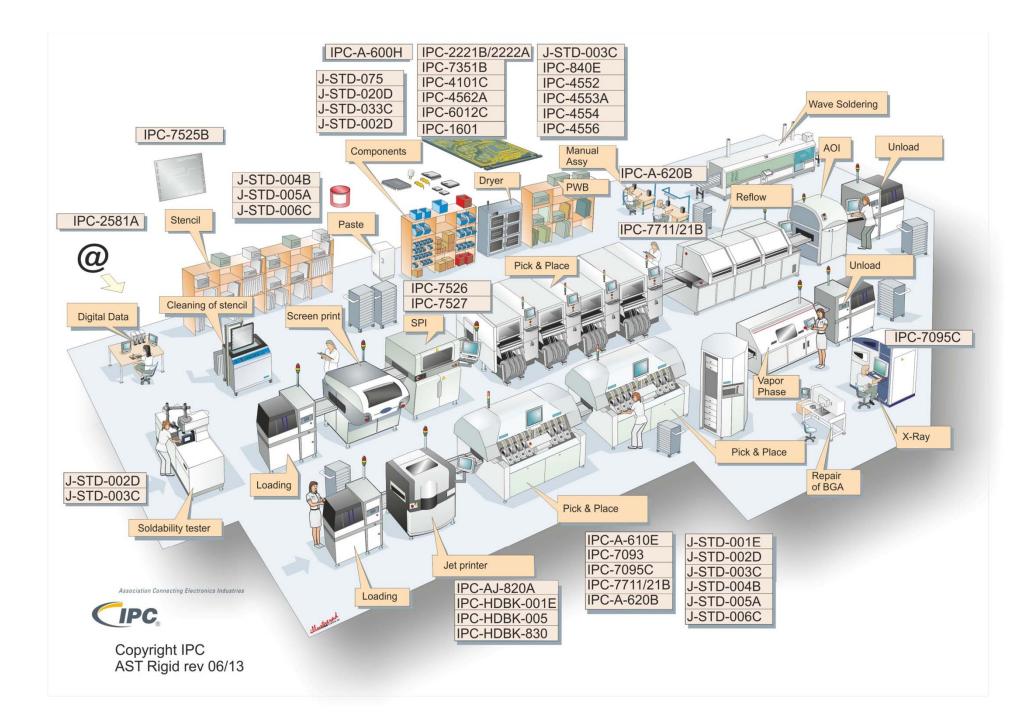
IPC Class 3:

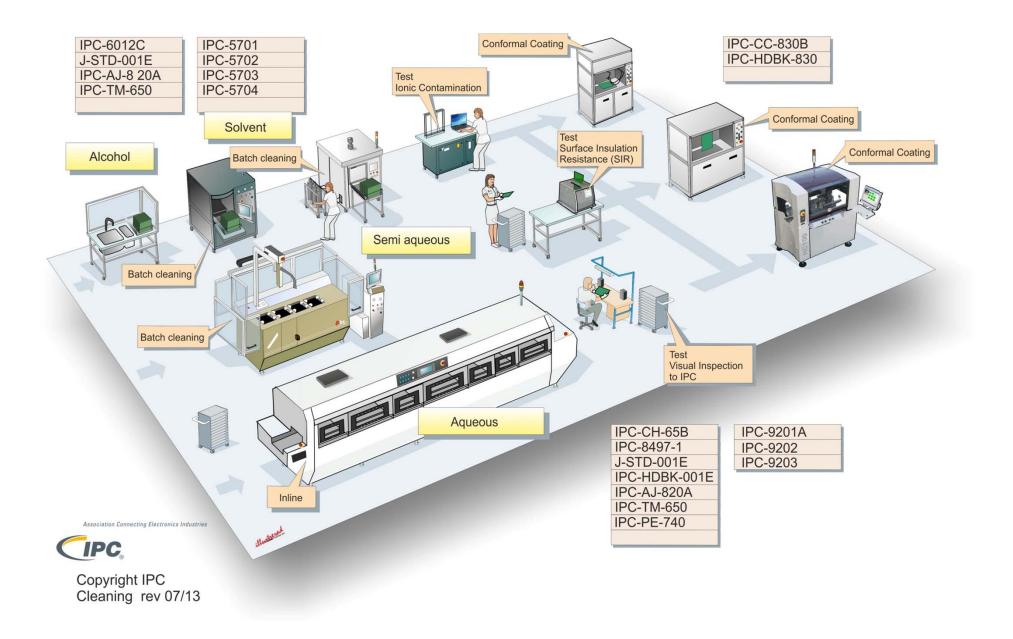
High Reliability or Harsh Operating Environment Electronic Products — Includes the equipment and products where continued performance or performance on demand is critical. Equipment downtime cannot be tolerated and must function when required such as in life support items or flight control systems. Printed boards in this class are suitable for applications where high levels of assurance are required and service is essential.

Please Observe that the final performance class for PCBA (PCBA=Assembled, Soldered, Cleaned and Tested) cannot be any greater than the performance class called out for the bare PCB.

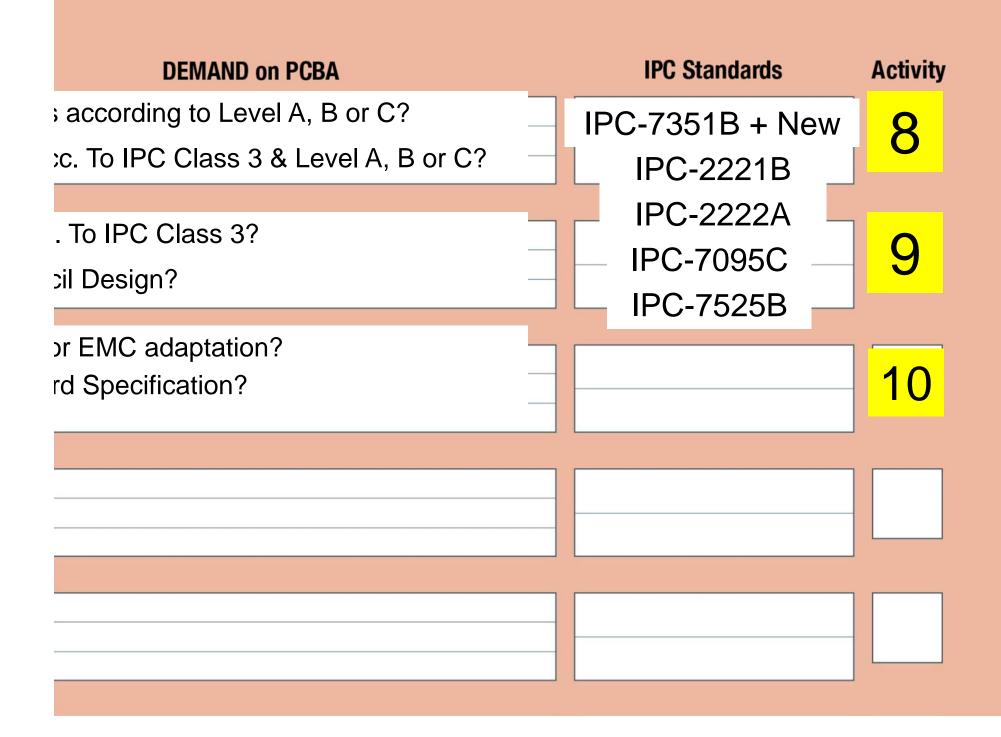

That is, in order to obtain a class 3 with the assembly (PCBA), one must first obtain an IPC class 3 recognition of the bare printed board (anything with a Class 2 or 1 with the PCB prevents obtaining a Class 3 with the PCBA).

J-STD-001E examples


- Material and processes used to assemble/manufacture PCBAs shall [D1D2D3] be selected such that their use, in combination, produce products acceptable to this standard.
- Solder **shall** be accordance with J-STD-006C [D1D2D3].
- Flux **shall** be accordance with J-STD-004B [D1D2D3].
- Solder paste shall be accordance with J-STD-005A [D1D2D3].
- Machine control [N1D2D3].
- Solder Bath [N1N2D3].
- Reflow Soldering [N1D2D3].
- Solder Connection [D1D2D3].


Systematic use of IPC Standards!

Conditions for achieving IPC Class 3!



}	Test Board Number X	No: 10	00
D	EMAND on PCBA	IPC Standards	Activity
1 Compatibl evel? EMC [e? RoHS 2? Demands? Repair allowed?	IPC-1752A	1
U	lass 3! Level A, B or C?		- 2
otions?			
ce finishes or	Components?	J-STD-002D	2
demands on Components?			J
			_

ding to IPC Class 3! Level A, B or C?		2
ce finishes on Components? demands on Components?	J-STD-002D	3
rements for impedance adaptation? Speed/Frequency?	IPC-2141A IPC-2251	4
nany Ampere in the Cu tracks? ng and Labeling?	IPC-2152 J-STD-609A	5
Components? Components?	IPC-7093 IPC-7095C	6
		Page 1

dans anpassning?		
eter/frekvenser?		
mpere i kopparledarna?		
ı skyltar?		
enter?		
enter?		
s on the PCB in form of: Materials,	IPC-4101C	—
Electrical / Thermal Properties, Hole,	IPC-2221B	
drawings / documentation.	IPC-2615	, , , , , , , , , , , , , , , , , , ,
	11 0 2010	Page 1

g for EMC adaptation? oard Specification?	10
ne supplier manage the BB Specification?	IPC-6011 IPC-6012C
Material and Cu foil type?	IPC-4101C, 4562 IPC-9691A
r Mask? ce finish?	IPC-SM-840E 13 IPC-4552, 53A, 54 & 56
col, Micro Sections and packaging?	IPC-6012C & IPC-1601 IPC-600H & J-STD-003C

Article	Test board number X	No: 1000
	DEMAND on PCBA inspection of components and PC st with components?	IPC StandardsActivityB: IPC-6012C,-600H15J-STD-002D15
Solder to	est of Bare Boards?	J-STD-003C 16
	quirements must be placed on roduction? IPC-Class 3!	J-STD-001E IPC-HDBK-001 IPC Training

Solder test of Bare Boards?	J-STD-003C _ 16
What requirements must be placed on PCBA Production? IPC-Class 3!	J-STD-001E IPC-HDBK-001 IPC Training
What requirements must be placed on the Digital Data? (Gerber files) IPC-Class 3!	IPC-2221B IPC-2222A
CAD acc to IPC Class 3 and Level A, B or C? Footprints acc to Level A, B or C?	IPC-7351B IPC-7095C IPC-7093
CAD of stencil so it will meet IPC Class 3?	IPC-7525B
Are the BB produced acc to IPC Class 3? Protocol? Packing and Storage?	IPC-6012C IPC-A-600H IPC-1601 Page 3

DEMAND on PCBA	IPC Standards	Activity
emand, level and handling?	J-STD-033C	20
Ista, Alloy, Flux & Bal size?	J-STD-004B J-STD-005A J-STD-006B	21
encil production technology?	IPC-7525B IPC-7526	
esult (Volume & Precision) acc to IPC SPI?	IPC-7527	22
xist BGA and or CSP components? xist BTC (QFN) components?	IPC-7095C IPC-7093	23

encil production technology?	_	ILC-1272R	
of the Stencil?		IPC-7526	
			-
esult (Volume & Precision) acc to IPC	_	IPC-7527	22
SPI?			
xist BGA and or CSP components?		IPC-7095C	23
xist BTC (QFN) components?		IPC-7093	
			-
process (temperature), wave soldering		J-STD-020D	24
components?			
		J-STD-075	1
nase process and the components?		IPC-4101C	
			_
			Deve

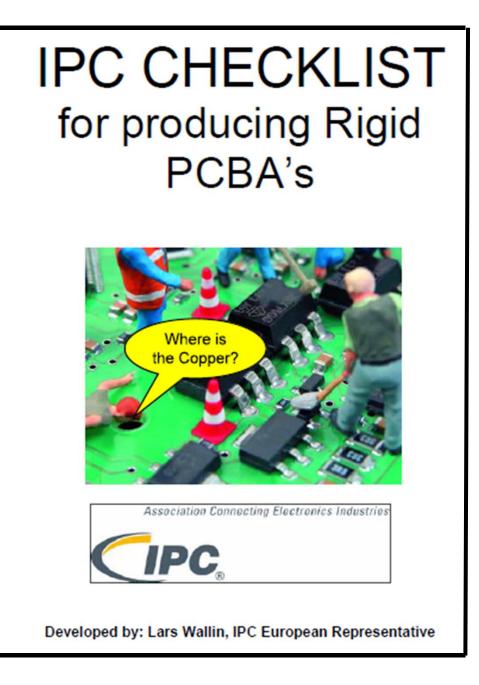
DEMAND on PCBA	IPC Standards	Activity
nspection with the assistance of AOI. Can IPC Class 3 criteria be implemented?	IPC-610E	<mark>25</mark>
nspection with the assistance of operator.	IPC-610E	26
	IPC Training	
Rework, Repair & Touch up of PCB PCBA?	IPC-7711/21B	27
Joes It exist valid CIS of CIT?	IPC Training	_ <u></u>

nspection of BGA/CSP with X-Ray. an IPC Class 3 criteria be implemented?	IPC-7095C 28 IPC-610E
nspection of BGA/CSP with X-Ray Does it exist Voids? Before and after assembling and soldering?	IPC-7095C 29
epair of BGA/CSP. it OK to repair BGA/CSP?	IPC-7095C 30
lux, Preheat & Process?	J-STD-004B & 006C
spection by CIS and CIT.	IPC-610E
	Page 5

DEMAND on PCBA	IPC Standards Activity
Is Cleaning a Demand? If Yes? Is the PCBA designed for Cleaning?	IPC-2221B 32 IPC-2222A
	IPC-6012C
Is the PCB clean before cleaning? How clean should the PCBA be after	IPC-5701, 02, 03 & 04 33
cleaning?	J-STD-001E
Cleaning liquid and methode?	IPC-65B & AJ-820 34
How shall the cleanliness be messured?	IPC-9201
Lackning of PCBA? Type of lack? Process?	IPC-CC-830B 35
Inspection of the Lacking!	IPC-HDBK-830

cleaning?	J-STD-001E	
Cleaning liquid and methode?	IPC-65B & AJ-820	34
How shall the cleanliness be messured?	IPC-9201	
Lackning of PCBA? Type of lack? Process?	IPC-CC-830B	35
Inspection of the Lacking!	IPC-HDBK-830	
Cabling?	IPC-A-620B	36
	IPC Training	
Production, inspection and test of	IPC-A-630	37
enclosures for electronic?		<u> </u>

What do We Now?


Practical Advice

You need a Checklist!

IPC Part: 4

Need for an IPC Checklist?

Pilots use Checklists! Time for the Electronic industry?

It is many Steps!

From the start to the end of a military PCB!

Plus that many influence each other!!

A. Purpose of IPC Checklists

In the entire production chain of a completed Rigid PCBA (Printed Circuit Board Assembled) it exist the following number of parameters, see table below.

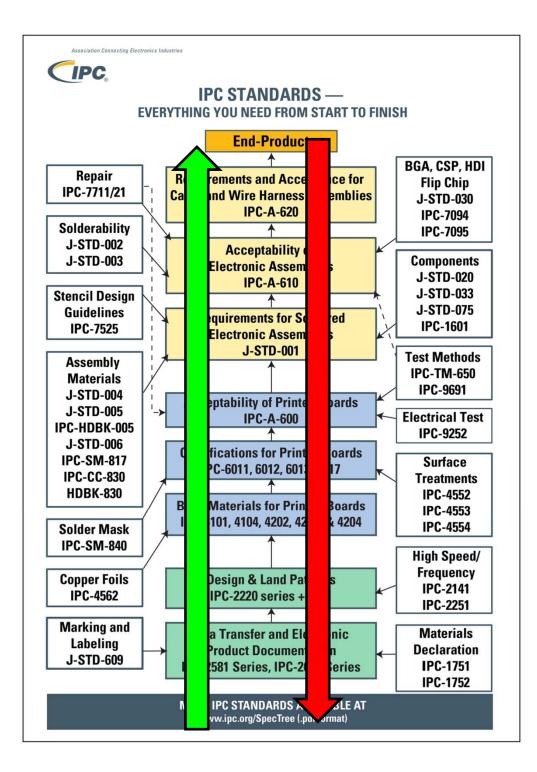
No	Rigid PCBA Parameters	Variables
1	Choice of Component Package	50
2	Choice of Surface Finish on Components. J-STD-002	12
3	CAD acc to IPC-2221 & 2222 Class 1, 2 or 3	3
4	CAD acc to IPC-2221 & 2222 Level A, B or C	3
5	Footprint/Land acc to IPC-7351 Level A, B or C	3
6	Design/CAD of QFN. IPC-7093	3
7	Design/CAD of BGA/CSP. IPC-7095	3
8	Design/CAD of stencils. IPC-7525	5
9	Placement of components	10
10	Choice of PCB base material. IPC-4101	11
11	Choice of PCB base material Cu foil. IPC-4562	2
12	Choice of PCB solder mask. IPC-SM-840	3

13	Choice of PCB Surface Finish. IPC-4552, 4553 or 4554	5
14	Choice of PCB Handling and Storage. IPC-1601	2
15	Age/Wetting of PCB. J-STD-003	3
16	PCB Process steps at supplier. IPC-6011 and 6012	20
17	Different stencil/printing options. IPC-7526 and 7527	5
18	Solder Paste/Stick/Wire options. J-STD-005 and 006	20
19	Flux with Solder Paste/Stick/Wire options. J-STD-004	5
20	Reflow/Vapor Phase/Wave/Selective/Hand options.	5
21	Choice of Soldering environments (O2 free, N2 or Air)	3
22	Choice of Lead or Lead free process.	2
23	Choice of process cycle. J-STD-020 and 075	10
24	Choice of Moisture Sensitive Level (MSL). J-STD-033	5
25	Choice of Cleaning Method. IPC-CH-65	4
26	Conformal coating	3
27	PCBA Requirements Class 1, 2 or 3. J-STD-001	3
28	PCBA Acceptability Class 1, 2 or 3. IPC-A-610	3
29	PCBA Touch up and Repair. IPC-7711/21	3
30	PCBA Requirements/Acceptability for Cable. IPC-620	3
	Total variables	212

Number of Combinations

4200 000 000 000 000 000 000 0

How many BAD Solder Joints does it exist in electronic products per year?


What do we need?

We need a Checklist!

IPC Part: 5

Summary and Conclusions

Will and Can the Electronic Industry meet the future quality demands?

I didn't use IPC Standards!

If You want an IPC Checklist?

Please give me your business card! OR Send me an email!

THANK YOU!

Mobil: +46 70-212 74 39 Email: LarsWallin@ipc.org

Association Connecting Electronics Industries

