

Qualification of Class L Chip on Board Package Technology for Space

Aeroflex Microelectronic Solutions – HiRel

Author: Richard Schwartzman Presenter: Peter Milliken

info-ams@aeroflex.com

May 20, 2014

Performance-Driven

Customer-Focused

www.aeroflex.com/RadHardASIC

Agenda

- Why Class L?
- Development / Qualification
- Design Considerations
- Magnetics
- Wirebond
- Conclusions

EROFLEX

Why Class L?

▼ MIL-PRF-38534, Appendix D

- Revision H released September 2010 to establish reliability models for microelectronic hybrids that could not meet the conventional hermiticity requirements of Class H (avionic) and Class K (high reliability/space)
- JEDEC Task Group 13.5 collaborated with US Government (DLA), aerospace and military procuring activities and microelectronic suppliers

Class F - Avionic (Standard quality class – non-hermetic) Class L - High Reliability / Space (Highest quality class – non-hermetic)

- Classes are defined by failure thresholds to:
 - Thermo-mechanical
 - High moisture
 - Highly accelerated environmental stress testing

- Class L Package Construction
 - Polyimide Printed Wiring Board (PWB)
 - Chip Scale Ball Grid Array (BGA) FET's and control IC's
 - Surface Mount Technology (SMT) passives
 - Planar magnetics (transformers)
 - Aluminum wire bond
 - High purity molding epoxy

FROFI FX

PDM Development - Milestones

- Chip scale BGA assembly processes and flows developed
- Wafer bumping vendors identified and qualified
- Internal chip scale BGA design rules defined
- Failure Mode and Effects Analysis (FMEA) completed
- Underfill voiding optimization completed
- Magneto-strictive effects optimization completed
- Underfill compliance with TM5011 requirements completed
- Finite element modeling techniques developed to predict reliability of chip scale BGA assemblies, lead integrity
 - Solder fatigue analysis
- Additional finite element modeling developed to predict module reliability
 - Lead fatigue analysis
 - Thermal analysis

PDM – Power Distribution Module

www.aeroflex.com/RadHardASIC

FROFI FX

TRL-9 Heritage Overlay of Process Re-Use

• The following is a summary of Aeroflex Chip-On-Board Heritage:

Description	Number of Units in Orbit or Scheduled	Orbit	Time on Orbit	Program Type	Size	#Die Bonds # Wire Bonds (WB)		Process Heritage Overlay
Custom Interface Control Board	> 4,000	GEO	Over 10 Years	Commercial Telecom	4.1" x 2.2" x 0.575H	108 Solder Die, 81 Epoxy Die, 387 WB	▼	Chip & Wire "Globtop" Heritage
Voltage Gate Regulator	> 12,000	GEO	Over 7 Years	Commercial Telecom	1.8" x 0.6" x 0.155" H	140 Die 233 WB	▼	SMT Heritage
Amplifier Control Board	> 120	GEO	Planned	Commercial Telecom	5.5" x 5.0" x 0.893" H	385 Die 744 WB		
Low Profile DC/DC Converter	4	LEO	2 Years	Weather Satellite	6.4" x 5.6" x 0.972" H	103 Die 404 WB	▼	Chip & Wire & SMT Heritage, plus
Low Profile DC/DC Converter	4	LEO	2 Years	Weather Satellite	6.4" x 5.6" x 0.972" H	99 Die 156WB	•	Planar Magnetics
*BIE: Voltage Monitoring & Telemetry Board	31	N/A Supply Vehicle	Launch Plan First: 9/18 2 nd : Dec '13 3 rd : In 2014	ISS Re-Supply Vehicle	6.6" x 5.6" x 0.300" H	190 Solder Die 372 Epoxy Bonds 915 WB	▼	Chip & Wire & SMT Heritage
*BIE: Over Charge Protection Board	31	N/A Supply Vehicle	Launch Plan First: 9/18 2 nd : Dec '13 3 rd : In 2014	ISS Re-Supply Vehicle	6.6" x 5.6" x 0.300" H	118 Solder Die 97 Epoxy Bonds 312 WB		
DC-DC Converter	>500	LEO	Planned	Commercial Telecom	4.8" x 3.0" x 0.632H	206 Solder Die 62 Epoxy Die 172 WB	•	Chip & Wire & SMT Heritage, plus
							•	Chip Scale BGA

 There are <u>no new processes required</u> in the production of Aeroflex's Power Distribution Module (PD.M.) Product Family = No Inventions, All Heritage

* BIE – Battery Interface Electronics

2014 EMPPS Workshop

www.aeroflex.com/RadHardASIC

AEROFLEX

Qualification Overview

2014 EMPPS Workshop

www.aeroflex.com/RadHardASIC

Qualification Overview

 The Aeroflex flow on the prior slide we propose is more stringent since evaluation units run through a serial combined flow for the boxed area below. Other delta areas to be discussed are circled in Red

Figure 4-1: Evaluation tests flow chart for Class 1 components

www.aeroflex.com/RadHardASIC

EROFLEX

Qualification Overview

- Aeroflex is currently in production on a QML Class L "pathfinder" device
- Class L flowcharts have been submitted to DLA for review / approval
 - Plan is to meet MIL-PRF-38534 Class K Element Evaluations
- Demonstrate Class L capability through MIL-PRF-38534
 - Subgroup 1 in accordance with MIL-STD-883 Methods 1010, 1014, 2002, 2009, 2026, 2030, 2036 on 5 units
 - Flow allows for use of either Autoclave, Steady State Temperature Humidity Biased Life Test, or HAST
 - Aeroflex will perform Autoclave for Pre-Temperature Cycling screen and Steady State Temperature Humidity Biased Life Test post Temperature Cycling screen
 - Subgroup 2 in accordance with MIL-STD-883 Method 1005 on 5 units
 - Subgroup 4 in accordance with MIL-STD-883 Methods 2009, 2011, 2014, 2019, and 2030 on 2 units
 - Subgroup 5 in accordance with MIL-STD-883 Method 3015 on 3 units
- Qualification results will be submitted to DLA within the next 6 months

FROFIEX

Qualification: Group B Subgroup 1 Traveler

- Group B Qualification Activity
- Conducted in accordance with "MIL-PRF-38534 Table IX.b" as per 1490-1090

Samples will be randomly selected after the completion of 100% pre-potting inspection.

								QUANTITI. 5
Operation	Procedure	Date	Mach	Oper	Otv	Otv	Ôty	
	OAP21-Re	v Out	No	Init	În	Pass	Fail	Domonko
	QAIZIG	· Out	140.	IIIA.		1 435	1 an	Kemarks
Group B S/G 1-7		Option 2 onl	у		MI	L-PRF-	38534	Table IX b
Physical Dimensions	259							2 Devices
Lead Fatigue	SOP- QA- 1069							T/M-2004 3(0) B2 (lead fatigue) D (leadless chip carriers) B1 for rigid leads Leads 15(0)
Resistance to Solvents								Not required – Parts Laser Marked
Internal Visual & Mechanical	265							1 Device
Accelerated Life Bake / In	221							2 Devices 200°C, 24 Hours
Out								
Destruct Wirebond Pull (Sample is qty of wires)	221							22 Wires each min. or all if less TX,RES,Cap,Dio, :31C, 5L-L
Die Shear Strength	220							2 Devices; 22 elements min. or all if less TX,RES,Cap,Dio,IC etc
Steam Age In	257							1 Device
Out		-						
Solderability	257							1 Device 15 Leads min. or all
Seal								Not required for non- cavity

www.aeroflex.com/RadHardASIC

EROFLEX

2014 EMPPS Workshop

Qualification: Group C Subgroup 1 Traveler

Aeroflex

planned screens for these steps.

GROUP C: S/G 1				1	QUANTITY: Small lot	t = 5(0), I	Large	Lot = 22	2(0) dev	rices
Proc		dure	MIL-STD	JEDEC		Date	Mach	Oper.	Oty	Oty
OPERATION	QAP21	Rev.	883 T/M	Method	Condition	Out	No.	Initial	Pass	Fail
External Visual	212	1	2009							
Resistance to Soldering	PS20-		2036				[
Heat	1084									
Electrical	307				Per Device Spec					
External Visual	.212		2009			1				
Ultrasonic Inspection			2030	J-STD-035						
PIND	243		2020		A or B, 5 passes		Not re	quired fo	r non-c	avity
Electrical	307				Per Device Spec					
Autoclave	SOP-			JESD22-102	96 hours -0, +5 hours	1				
	QA-				121±2°C, (dry bulb)	1.				
	1069	-			100% Humidity,	1.				
OR	-				29.7psia vapor Pressure					
Steedy State Temperature	SOP-			JESD22-101	1,000 hours -24 +108				1.1	
Humidity Bias Life Test	QA-			·· ,	85±5% Humidity					
(85/85)	1069				49.1 psia, vapor pressure	-				
, <i>)</i>		<u> </u>								
OR	SOP-			JESD22-110	96 hours -0, +2 hours	1				
Highly Accelerated	QA-	1			130±2°C, (dry bulb)					
Temperature and Humidity	1069				33.3 psia vapor Pressure	1				
Stress Test (HAST)	222		1010		100					
Temperature cycling	222	· ·	1010		100 cycles, -55 C to 125 C					
Electrical	307	L			Per Device Spec					
Autoclave ,	SOP-			JESD22-102	96 hours -0, +5 hours					
	QA-				121±2°C, (dry bulb)			• •		
0.0	1069				100% Humidity,					
Steady State Temperature	SOP-			IESD22-101	1 000 hours -24 +168					
Humidity Bias Life Test	04-		*	100022-101	85±2°C (dry bulb)					
(85/85)	1069			1 A A	85±5% Humidity				-	
	1005			· · · ·	49.1 psia vapor pressure (2/),				1	
OR Useble Assolution	SOP-			JESD22-110	96 hours0, +2 hours					
Highly Accelerated	OA-				130±2°C, (dry bulb)					
Stress Test (HAST)	1069				85% ±5% Humidity,					
54455 (14151)			1 N N		33.3 psia vapor Pressure					
Electrical	307			54	Per Device Spec					
Constant Acceleration			2001		3,000 G, Y1 direction	N	ot requi	red for r	ion-cavi	ty .
Random Vibration			2026		Condition F	N	ot requi	red for n	ion-cavi	tý
Mechanical Shock	244		2002		Cond B, Y1 Direction	N	ot requi	red for n	on-cavi	ity
PIND	243		2020		A or B, 1 pass	N	ot requi	red for n	ion-cavi	tv
Electrical	307				Per Device Spec	+ ···				,
Arrows four	222		1014		a serve oper	-	t no out	rad for		
Gross Leak	272		1014				or redni	rea tor r	ion-cavi	ιy

1/ Ultrasonic inspection may be performed at the end of S/G 1 in lieu of S/G 4

2/ After 240 hrs. read and record electrical test data required and proceed for completion of 1000 hrs.

AEROFLEX

Qualification: Group C Subgroup 2 Traveler

QUALIFICATION TRAVELER NON-HERMETIC, NON-CAVITY DEVICES (CLASS L)

CIRCUIT #:

GROUP C TRAVELER #

J.O. #____

EROFLEX

GROUP C: S/G 2

QUANTITY: Small lot = 5(0), Large Lot = 22(0) devices 1/

	Proce	dure		TERES	Condition	Date Out	Mach No.	Oper. Initial	Qty Pass	Qty Fail
OPERATION	QAP21	Rev.	MIL-STD 883 T/M	Method	Constant	~ ~ ~ ~				
Electrical	_307				Room					
					Cold					
					Hot	1				
Life Test IN	248		1005	JESD22-A108	1000 hrs @ 125° C Time IN	i.	-			
OUT				ta th	Time OUT					
Electrical	307				Room					
				-	Cold					
1		-			Hot		+ .			

1/ Samples from the Preconditioning test to be used for S/G 1

www.aeroflex.com/RadHardASIC

Qualification: Group C Subgroup 4 Traveler

QUALIFICATION TRAVELER NON-HERMETIC, NON-CAVITY DEVICES (CLASS L)

CIRCUIT #:

GROUP C TRAVELER

J.O. #

EROFLEX

GROUP C: S/G 4

OUANTITY: 2(0)

OPERATION	Proced QAP21	ure MIL-STD Rev. 883 T/M	JEDEC Method	Condition 2/	Date Out	Mach No.	Oper. Initial	Qty Pass	Qty Fail
i i	Sample	es will be rand	omly selected	after the completion of 100%	pre-pot	tting in	spection	1	
External Visual	212	2009				4			
Ultrasonic Inspection 1/		2030	J-STD-035	Compare with initial results (refer to note 1/ under S/G 1 table)					
Internal Visual & Mechanical	265	2014							
Bond Strength	244	2011		44 wires minimum.					
Die Shear	220	2019		5 elements from each attach process					

1/ The Ultrasonic Inspection will be performed at the end of S/G 1 to compare with the initial results

2/ S/G 4 samples will be processed up to Pre-seal inspection and will not be potted

Qualification: Group C Subgroup 5 Traveler

QUALIFICATION TRAVELER -NON-HERMETIC, NON-CAVITY DEVICES (CLASS L)

CIRCUIT #: _____ GROUP C TRAVELER #_____ J.O. #

AEROFLEX

GROUP C	:: S/G 5
---------	----------

QUANTITY: 3(0)

	Proce	dure				Date	Mach	Oper.	Qty	Qty
			MIL-STD	JEDEC	Condition	Out	No.	Initial	Pass	Fail
OPERATION	QAP21	Rev.	883 T/M	Method				-	r.	
Electrical	307		3015		Group A S/G 1					
ESD			3015		ESDS					
Electrical	307		3015		Group A S/G 1					

Production Travelers			
Date Codes			
Serial Numbers		 1	

Qualification: Molding Epoxy Ionic Purity

 Aeroflex uses a Sandia
Labs developed moisture sensitivity test vehicle

FROFLEX

- Encapsulated with each lot of high purity encapsulating epoxy
- Subjected to biased HAST and autoclave to validate epoxy's cleanliness in an accelerated high moisture environment

www.aeroflex.com/RadHardASIC

Design Considerations: Chip Scale BGA

- PDM utilize chip scale BGA on PWB
 - Density advantage
 - Assembly advantage
 - CTE mismatch mitigation
- Aeroflex strategy for success
 - Small dice (< 3mm)
 - Large Ball (~300um dia)
 - Underfill
 - Analysis
 - Deep Thermal cycle testing

Power MOSFETs

□ 3mm x 3mm, 36 balls (300µm dia, 6 x 6 array)

- Control ICs
 - □ 6 balls (300 micron dia, 2 x 3 array)
 - □ 8 balls (300 micron dia, 2 x 4 array)
 - □ 49 balls (300 micron dia, 7 x 7 array)
 - □ 56 balls (300 micron dia, 7 x 8 array)

Small Signal MOSFETs

□ 1mm x 1mm, 4 balls (300µm dia, 2 x 2 array)

Design Robustness: Chip Scale BGA

- Destructive Physical Analysis (DPA) per MIL-STD-883
 - Method 5009.1
 - Solder Ball Shears IAW MIL-STD-883
 - Method 2011.8
 - Solder Ball Pull Test IAW JESD22-B115.
 - Die Shear Strength IAW MIL-STD-883
 - Method 2019.8
 - Flip Chip Pull off Test IAW MIL-STD-883
 - Method 2031.1
 - Cross sectioned samples
 - Photographs of devices before and after testing
 - Sonoscans
- Long Term Temperature Cycling
 - -55°C to + 125°C, 20 min dwell, 7°C/min ramp rate
 - Evaluated at 100 cycle increments
 - PASSED 3,500 cycles

IAW - in accordance with

2014 EMPPS Workshop

www.aeroflex.com/RadHardASIC

FROFLEX

BGA reflow solder: Extreme Temp Cycle

- Process Delta Qualification @ -65°C to 150°C
- Post 350 cycles, <u>non-underfilled</u> and <u>underfilled</u>

Non-underfilled

Typical Cross-Section

Underfilled

EROFLEX

www.aeroflex.com/RadHardASIC

2014 EMPPS Workshop

Qualification: Planar Magnetics

- Designs utilize Planar Magnetics
- Bonded to each other and PWB
- Magnetic level mechanical stress testing showed good behavior
 - ~4,000g centrifuge
 - Deep thermal cycling
 - Magnetics in final module will also be supported by molding epoxy

() FROFIEX

Qualification: Planar Magnetics

Planar Transformers

- Aeroflex has developed a robust Planar Transformer design
- The custom qualification plan developed surpasses the requirements of MIL-PRF-27, MIL-STD-981, MILSTD-1547 and NASA EEE-INST-002 Level 1 requirements.
- Qualification has passed Subgroups 1-3 testing and currently in Subgroup 4 Life Test
- EVALUATIONS
 - 12 units assembled per specification
 - Subjected to 100 Thermal Cycles, in 25 cycle increments, 2,500G Centrifuge performed between cycles. PASSED
 - Split into 2 groups of six
 - 1. First group centrifuged to failure
 - 2. Second group subjected to Thermal Cycles and Centrifuge to failure (25 thermal cycles at the temperature extremes of -40°C to +120°C at a ramp rate of 3-10 °C/min, followed by 2,500G centrifuge)

Transformer Design – Centrifuge to Failure

- Six parts pre-conditioned w/100 Thermal Cycles then subjected to a series of <u>increasing G-level Centrifuge</u> tests until failure
 - ▼ 2,500Gs to 4,000Gs (500G increments) PASSED
 - @ 4,500Gs 4 of 6 Failed. Ferrite cores broke apart
- 2. Six parts subjected to a series of <u>additional Thermal Cycles at</u> <u>2,500G Centrifuges</u> until failure
 - ▼ 125 Cycles to 300 Cycles (25 cycle increments) PASSED
 - @ 350 Cycles 2 of 6 Failed. Ferrite cores broke apart
- No adhesion failures.
- Excellent margin to flight requirements.

www.aeroflex.com/RadHardASIC

FROFI FX

Purpose of Evaluation

 Demonstrate performance of AI wire bonding, in accordance with a modified MIL-PRF-38534 Appendix D, Class L nonhermetic cavity stress screening (reduced time 500 vs 1000hrs)

Coupon Description

- Quantity (4) PDM Devices
- Each device mounted on a wire-bondable organic PWB
- Wire Type: 1.25 mil AL / 1% Silicon Wire
- Coupon Construction and Screening Background
 - 100% NDPT at 2.5 +/- 0.2 grams: no anomalies
 - 100% Electrically tested PASSED
 - 4 parts encapsulated per production process, re-tested 100%, PASSED

NDPT – Non-Destructive Pull Test

()FROFI FX

Wire bond DOE: AI Wedge to organic PWB

Environmental Stress Screening

S/N 002 & 004 parts subjected to:

- 85°C / 85% Humidity at 96, 154, 250 hours
- 100 Temp Cycles
- 250 hours of 85°C / 85% Humidity

S/N 003 & 005 parts subjected to:

FROFLEX

- Autoclave per JESD-A-102
- ▼ 100 Temp Cycles -55°C to +125°C

HAST

Mechanical Analysis post Environmental Stress Screening

- Cross-sections performed
 - No Mechanical aberrations (intermetallics or indication of interfacial delam or lift of wires to PWB) detected from modified 38534 appendix D abbreviated Class L exposure
- Mechanical Analysis images follow

• Conclusion:

 Class L wirebond process DOE was successful – Aeroflex is proceeding with planned PDM production & then full qualification

Wire bond DOE: AI Wedge to organic PWB

Coupon Sample Images

Metallographic Sectioning post Screening

White line crosssection location

(EROFLEX

S/N 002 subjected to:

- > 85°C / 85% Humidity at 96, 154, 250 hours
- > 100 Temp Cycles
- > 250 hours of 85°C / 85% Humidity

S/N 003 subjected to:

- > Autoclave per JESD-A-102
- > 100 Temp Cycles -55°C to +125°C
- > HAST

www.aeroflex.com/RadHardASIC

Wire bond DOE: AI Wedge to organic PWB

Metallographic View of PCB Pad Wire Bond after 1-Micron Diamond Polishing

200X Magnification

1,000X

AEROFLEX

www.aeroflex.com/RadHardASIC

Summary

- Aeroflex has manufactured and delivered COB nonhermetic modules to customers that are in space today
 - TRL-9 qualified to customer source control drawings
- The introduction of Class L, MIL-PRF-38534, Appendix D, establishes a standard for the Aerospace and Defense industry for the "Highest quality class [for] non-hermetic" devices
- Aeroflex considers Class L "highly accelerated" screening requirements to be more stringent than the legacy qualifications previously use to achieve the TRL-9 designation
- Aeroflex has demonstrated that its heritage processes are capable of yielding fully qualified COB non-hermetic modules in compliance with MIL-PRF-38534, Appendix D Class L