

ITT A0/1-5245/07/NL/Sfe FINAL PRESENTATION

Development of high current, high voltage and high temperature cable suitable for Electric Propulsion.

I. Introduction

Problematic :

- No space qualified cable available for Electric Propulsion (EP) applications requiring high temperature, high current and high voltage capabilities.
- dynamic interface imposed by a pointing mechanism, this demands the additional feature of flexibility in the selected cable.
- PTFE, polyimide etc., although having excellent dielectric capabilities, they are fundamentally limited to operation at temperatures below approximately 200 degrees Celsius.

Two principle objectives :

1 - The first one is to identify and investigate the most promising insulation materials that could be used in the manufacture of high temperature and high voltage cables.

2 - The second objective is to manufacture sample lots of the cable, subject it to thermal, vacuum, dielectric electrical strength, partial discharge and environment testing with the ultimate objective of identifying a cable that will enable space qualification.

Current system

Mineral

II. REQUIREMENTS

Physical & electrical requirements

Max. continous operating voltage	5 kV
Max. operating current	12 A
Conductor gauges	AWG 20 – AWG 4
Immunisation	ESD
Radiation resistance	200 MRad

Thermal requirements

		Static application	Dynamic application
Operating	min °C	-50	-20
temperature	max°C	280	120
Non operating	min °C	-100	-50
temperature	max °C	200	120

II. REQUIREMENTS

Geometrical Requirements

PROJECT PROGRESS CHART

TN01-TN03

Cable Requirement Study (TN-01 & TN-02)

Survey by Astrium of the needs of several thruster users in order to define generic requirements (SNECMA, Alta, Thales, Qinetiq etc.)

Existing component survey (TN-03)

Materials component survey about conductors materials and their physical limits (Tin,Silver, Nickel plating, Copper, Copper Alloy...), a generic survey on polymeric materials and fibers and a generic survey on existing cable solutions.

→ 92 pages report : Requirement definition and review of existing components.

TN04-TN05

- Material evaluation and study plan (TN-04)
- 1- Reflection on the possible cable construction techniques focused on metallic and insulation materials that might be considered for the final product.

Presentation of the advantages and drawbacks of many materials (both metals and plastics).

- 2 Study approach explanation
- Sample Assessment Test Plan (TN-05)

→ 110 pages report : Existing Component Survey and Material Evaluation
 & Study plan.

Evaluated single strand

AWG	Material	Plating	Length (m)	Diameter (mm)	Section (mm²)
2401	Percon ™ 24	27% Ni	Acc. to norm	0.511	0.205
2401	Percon ™ 24	10% Ni	Acc. to norm	0.511	0.205
2401	Percon ™ 24	7 % Ni	Acc. to norm	0.511	0.205
2401	Nickel plated copper	27% NI	Acc. to norm	0.511	0.205
2401	Nickel plated copper	1.5% NI	Acc to norm	0.511	0.205

→Conclusion page 35 of Test Report PV2619A.

The selected material for the evaluation of the conductor constructions is the 10% Nickel plated PERCON24®

• Examples of conductor constructions

Bunched

Ropelay

• Evaluated constructions

AWG	Material	Plating	Construction	Diameter (mm)	Section (mm ²)
19 x 0.511 (24)	Percon24®	10% Ni	Unilay	2.555	3.89
19 x 0.511 (24)	Percon24®	10% Ni	Concentric	2.555	3.89
7 x 7 x 0.320 (28)	Percon24®	10% Ni	Ropelay	2.583	4.073
37 x 0.361(27)	Percon24®	10% Ni	Concentric	2.828	3.787

■ 350°C

- Critical thermal tests
 - \rightarrow Thermal stability (short term ageing) \rightarrow Long term ageing
 - 400°C
 - 450°C
 - **500°C**
 - \rightarrow Temperature elevation under amperage variation
 - 50°C 100°C 150°C
 - 200°C 260°C 300°C
 - Characterization tests
 - \rightarrow Mechanical
 - Alternate bending
 - Elongation, Breaking load....
- \rightarrow Electrical
- Linear resistance

Selected conductor
 19x0.511 Unilay

- Results statement
 - ✓ Good mechanical stability when exposed to very high temperature (short exposition)
 - ✓ Good mechanical and electrical stability when exposed for long time to high temperature
 - Design recommended for High voltage application
 - ✓ Good flex life

Potential materials list (according to TN04-TN05 issue)

	Temperature	High temp.	voltage		Radiation		
	-100°C	260-300°C	5 kV DC	Out-gass.	200 MRad	bending	Deployment
	-100 0	200-300-0	J KV BO		200 Mixad	+/- 6 °	+/-90° max
Thermoplastic polyimide	~	TBE	~	~	~	~	TBE
Thermoset Polyimide resin	~	~	×	~	\checkmark	~	TBE
Polyimide tape	✓	~	\checkmark	✓	✓	✓	TBE
PEEK	✓	×	\checkmark	✓	✓	✓	TBE
PEEK HT G22	✓	✓	\checkmark	✓	~	✓	TBE
PEEK HT ST45	✓	✓	\checkmark	\checkmark	~	✓	TBE
Vicote ™ HT	✓	✓	\checkmark	TBE	~	✓	TBE
OXPEKK CE	✓	✓	\checkmark	\checkmark	~	✓	TBE
RTP PEEK +	√	×	X	TBE	\checkmark	✓	TBE
Nanotube blend							
PBI film	\checkmark	✓	\checkmark	✓	✓	\checkmark	TBE
PBI solvent based resin	~	~	×	\checkmark	\checkmark	×	TBE 18

Rejected materials and reasons why

Thermoset Polyimide solvent based resin	 The process does not allow to realize a coating on wires or cables with a diameter bigger than 3 mm. Machines not adapted to process rigid wires with a diameter > 3mm (more for thin wires). Curing very difficult.
	 Limited temperature.
PEEK	 More rigid than its by-products: PEEK HT G22 – PEEK ST G45 – OXPEKK CE.
	 Process not compatible with a continuous process(Evaporation
Vicote ™ HT	time and curing are way too long).
	 Possibility to realize only a thin coating with too low mechanical
	properties.
	 Machines and processes not adapted for diameters >3mm.
RTP Nanotubes	 Limited temperature.
	 Difficult to extrude in thin layers.
	 Conductivity not controlled.

Rejected materials and reasons why.

PBI film	 Properties identical to the Kapton tape (no significant reason to use instead of Kapton tape). 		
Thermoset PBI solvent based resin	 Fragile once it is cured 		
OXPEKK C03 DRT	 The process does not allow to realize a coating on wires or cables with a diameter bigger than 3 mm. Machines not adapted to process rigid wires with a diameter > 3mm (more for thin wires). Curing very difficult. 		
ΟΧΡΕΚΚ C	 Limited temperature. More rigid than its by-products: PEEK HT G22 – PEEK ST G45 – OXPEKK CE. 		

Selected materials and applicable process

Trade name	Chemical nature	Thermoplastic extrusion	Taping	Coating
AURUM PL450C	Thermoplastic polyimide	\checkmark	X	X
PEEK HT G22	Poly Ether Ketone (PEK)	\checkmark	X	X
PEEK HT ST45	PEKEKK	\checkmark	X	X
OXPEKK CE	PEKK	\checkmark	X	X

 Same family as Kapton®. Low Outgassing Very high radiation resistance. Excellent electrical resistance. Maximum température rating : 240°C. New material based on PEEK. Low Out-gassing Low Out-gassing Low Out-gassing Low flammability Improved thermal properties Improved mechanical properties. Maximum temperature 240°C. Making point : Making point : Material based on PEEK. Low Out-gassing Low Out-gassing Low Out-gassing Low flammability Improved thermal properties Maximum temperature rating : 260°C. Melting point : Maximum temperature Melting point : Melting point : 	Aurum PL450C	PEEK STG 45	PEEK HT G22	OXPEKK-CE
- Melting point: 388° C - Melting point: 387° C 373° C - Tg : 163^{\circ}C - Tg : 163^{\circ} - Tg : 245^{\circ}C - Tg : 162^{\circ} Density : 1.20 Density : 1.20	 Same family as Kapton®. Low Outgassing Very high radiation resistance. Excellent electrical resistance. Maximum température rating : 240°C. Melting point: 388°C Tg : 245°C Density : 1.22 	 New material based on PEEK. Low Out-gassing Low flammability Improved thermal properties Improved mechanical properties. Maximum temperature rating : 260°C. Melting point : 387°C Tg : 162°C 	 Material based on PEEK. Low Out-gassing Low flammability Improved thermal properties Maximum temperature rating : 260°C Melting point : 373°C Tg : 163°C Density : 1.20 	-Material based on PEEK. - Low Out-gassing - Low flammability - Improved thermal properties - Maximum temperature rating : 260°C - Melting point : 360°C - Tg : 163°C - Density : 1.31

Samples construction

Ageing Tests

Thermal shocks (100 cycles)

280°C 100h thermal ageing

Flex Life (+/- 6°)

Flex life (+/- 90°)

Flex life (+/- 67.5°)

Dielectric breakdown at high temperature

Samples extremities connected to HV

High voltage electrode

27

Partial discharges measurement

28

PARTIAL DISCHARGE MEASUREMENT

PARTIAL DISCHARGE MEASUREMENT

30

• Partial discharge testing can detect:

- Insulation defects that may have occurred during cable system installation or the manufacturing process
- Insulation deterioration due to normal service operating conditions

Partial discharge testing is a <u>PREDICTIVE</u> qualitative analysis tool that can warn of a potential <u>UPCOMING</u> system failure.

PARTIAL DISCHARGE MEASUREMENT

31

Critical tests

Ageing tests

- Thermal Shocks
- 280°C thermal ageing

Mechanical tests

- Wrapp test at ambiant temperature
- +/-90° alternate bending

Electrical tests

- Dielectric breakdown at high temperature

Tests results – failed materials : AURUM PL450C

Cracks and deformations during < 280°C thermal ageing.

Serious cracks in +/- 90° bending test.

Tests results – failed materials : OXPEKK CE

Material is OK after thermal shocks ageing but become very brittle after 280°C thermal ageing.

Picture shows damage after wrap test at ambient temperature and after 280°C thermal ageing.

Tests results on remaining materials

PEEK HT G22

PEEK ST G45

PEEK STG45 Dielectric breakdown at high temperature

Tests results – materials still in the race

PEEK ST G45		PEEK HT G22
Mechanical tests		Mechanical tests
Initial state	ОК	Initial state
After Thermal Shocks	ОК	After Thermal Shocks
After 280°C thermal ageing	ОК	After 280°C thermal ageing
Electrical tests		Electrical tests
Initial state	ОК	Initial state
After Thermal Shocks	ОК	After Thermal Shocks
After 280°C thermal ageing	OK	After 280°C thermal ageing
Wrap tests (cold and ambient temperature)	ок	Wrap tests (cold and ambient temperature)
Abrasion (500 cycles – 1 kg)	ок	Abrasion (500 cycles – 1 kg)
Overload resistance		Overload resistance

OK

OK

OK

OK

OK

OK

OK

OK

Tests results – materials still in the race

OVERLOAD RESISTANCE

PEEK HT G22

PEEK ST G45

\mathbf{Durat}°	Temp.	Amp.	Results
30 min	250°C	97 A	ОК.
15 min	400°C	124 A	Melting. No smoke. No burning.Conductor exposed.

	Temp.	Amp.	Results
30 min	250°C	98 A	ОК.
15 min	400°C	124 A	Melting.No smoke. No burning. Conductor exposed.

Selection of the final insulation material

Processing

•PEEK ST G45 slightly better than HT G22.

Temperature

- PEEK ST G45 has higher temperature resistance than HT G22.
- Better behavior during overload test.

Launching of a **2000 hours** ageing test at 280°C with PEEK STG45 insulated samples.

Ageing in hours	Aspect		Elongation (%)	Tensile strength (daN)	Voltage test	Wrap test + voltage test	Bending test +/-6°	Observation
500 hours	\checkmark	Ech 1	13,95	10,66	\checkmark	\checkmark	\checkmark	
		Ech 2	15,38	10,54				
		Ech 3	15,14	10,20				
		Mini	13,95	10,20				
		Max	15,38	10,66				
		Моу	14,82	10,47				
1000 hours	\checkmark	Ech 1	13,35	10,10	\checkmark	X	~	
		Ech 2	14,67	10,18				
		Ech 3	14,63	9,83				
		Mini	13,35	9,83				
		Max	14,67	10,18				
		Моу	14,22	10,04				
	\checkmark	Ech 1	17,62	9,73	\checkmark	X	\checkmark	The samples are very brittle.
		Ech 2	19,24	10,14				
1500		Ech 3	19,53	10,10				
hours		Mini	17,62	9,73				
		Max	19,53	10,14				
		Моу	18,80	9,99				
	\checkmark	Ech 1	13,11	10,20	\checkmark	X	\checkmark	
2000 hours		Ech 2	13,69	10,03				The samples are
		Ech 3	17,28	10,60				
		Mini	18,55	10,29				very brittle.
		Max	18,49	10,50				_
		Моу	14,69	10,28				4

PEEK STG 45 Breakdown voltage at high temperatures on 500 to 2000 hours aged samples

Mechanical behavior

These results show that the aged (more than 1000 hours) material can only withstand low amplitude bending solicitation. When it is exposed to high amplitude bending manipulation, it breaks.

Mechanical tests

Electrically, the material still keeps interesting properties on the whole temperature range. Breakdown voltages are higher than 10 kV DC at 300°C.

Test Report PV2759A (Draft).

- Materials for technologies evaluation
 - Conductor
 - 19X0.511 Unilay 10% Ni plated Percon24
 - Insulation materials
 - PEEK ST G45
 - Polyimide tape Kapton® type HN
 - Semi-conductive material
 - Semi-conductive Kapton® tape
 - Shielding
 - Nickel plated Copper

Samples construction

Mechanical and standard electrical tests results – after each ageing phase – before 200 MRad radiation.

	Aspect	Voltage test	Wrap test + voltage test	Bending test +/-6°	Bending test +/-90°	Bending test +/-67°
Initial state	Complia nt	Compliant	Compliant	Compliant	Compliant	Compliant
After Temperature cycling / HV	Complia nt	Compliant	Compliant	Compliant		
After 280°C thermal ageing / HV	Complia nt	Compliant	Compliant	Compliant		
After 300°C thermal ageing / HV	X	X	X	X		

Material aspect after 100 hours exposure at 300°C.

Mechanical and standard electrical tests results – after each ageing phase – <u>after</u> 200 MRad radiation.

	POST-IRRADIATION RESULTS							
	Aspect	Voltage test	Wrap test + voltage test	Bending test +/-6°	Bending test +/-90°	Bending test +/-67°		
Initial state	Compliant	Compliant	Compliant	Compliant				
After Temperature cycling / HV	Compliant	Compliant	Compliant	Compliant				
After 280°C thermal ageing / HV	Compliant	Compliant	Compliant	Compliant				

High temp. Breakdown tests results – after each ageing phase – before

PARTIAL DISCHARGES MEASUREMENTS BEFORE 200 Mrad radiation exposure.

2.5 kV AC

280°C Thermal Ageing

Initial state

53

PARTIAL DISCHARGES MEASUREMENTS **AFTER** 200 Mrad radiation exposure.

2.5 kV AC

280°C Thermal Ageing + 200 Mrad

Initial state + 200 Mrad

VI. Synthesis

VI. SYNTHESIS

Construction

- 1 19X0.511 Unilay 10% nickel plated PERCON 24[®].
- 2 2 X Kapton[®] tape 100 HN with 50% covering.
- **3 PEEK STG45 extruded insulation Thickness : 1 mm.**
- 4 2 X Kapton[®] tape 200 HN with 50% covering.
- 5 Optional : 1 X Kapton[®] semi conductive tape XC10E7.
- 6 10 % Nickel plated PERCON24 braided shielding.

VI. SYNTHESIS

2000 hours 280°C

- Samples OK after 500h.
- Brittle after 1000 hours but still OK for +/-6° bending.
- Electrically compliant even after 2000 hours.

100 hours 300°C

Material highly damaged.

Thermal cycling/thermal ageing 280°C

•Samples OK.

•Still able to withstand a wrap test and keep compliant electrical resistance.

VI. SYNTHESIS

Radiation 200 MRad

- Samples OK (slight degradation due to radiation exposure).
- Not significant effect on the insulation.

Mechanical & electrical

- High amplitude bending tests OK at initial state.
- After 2000 h at 280°C, bending test at +/-6° are OK.
- After 2000 h at 280°C, electrical resistance has not significantly changed.

Test reports

- Conductors Evaluation Test report PV2619 Issue A
- Insulation Evaluation Test report PV2759 Issue A
- Technologies Evaluation Test Report PV2934 Issue A

THANK YOU FOR YOUR (LONG) ATTENTON

