ABSTRACT

Low ESR tantalum capacitor Evaluation and Qualification

Ref.No.: 400010504/10/NL/PA

Start Date: 4th November 2010
Completion Date: July 2013,

Contract Total Fixed Price: 99,000 EUR

Prime Contractor: AVX Czech Republic s.r.o.
Dvorakova 328, 563 01 Lanskroun, Czech Republic,
Bidding code: 58042

Contacts:
ESA Technical Officer: Mr. Olivier Perat
ESA Contractual Officer: Mrs. Sandy Courtois
AVX Project Officer: Mrs. Petra Pribanova
AVX Technical Contact: Mr. Tomas Zednicek
Abstract prepared by: T.Zednicek
26th July 2013, reviewed 15th August

1. TECHNICAL OBJECTIVES

The main technical objective is to develop a low ESR, High CV tantalum capacitor manufactured in European location for space application, mainly European space manufacturers.

There were limited specification options on tantalum capacitors for aerospace manufacturers based on European standardization. The limited choice of ESCC EQPL part numbers (ESCC 3012) running in relatively low volumes that increase manufacturing price and reduce interest from users towards the near future. There is also currently a limited range of CV for tantalum capacitors based on the 3012/001 TAJ-ESCC qualified range. European aerospace manufactures are today dependent on MIL (CWR or COTS+) based standardization offering the requested CV values and low ESR tantalum capacitors.

The latest low voltage, high power computing technologies require lower ESR tantalum capacitors that provide higher ripple current capability at smaller case sizes. Thus these low ESR capacitors may reduce component count and the total weight. Low ESR tantalum capacitor matrix will be created a based on the existing TAJ (ESCC-3012/001) capacitors, professional TRJ low ESR capacitors and TRM tantalum multianode very low ESR capacitors.

The development have been lead by AVX Czech Republic located in Lanskroun, Czech Republic as already manufacturing plant of ESCC qualified tantalum solid capacitors, type TAJ-ESA ESCC 3012/001 for long time.

2. IMPLEMENTATION STEPS
The project has been implemented into two working packages:

Evaluation of the technology (WP1) and Qualification (WP2).

The WP1 evaluation split in four sub WPs:

1] **WP1100 ETP (Evaluation Test Plan) definition and proposal**
 - existing ESA, MIL and other aerospace standards will be evaluated and ETP proposed based on the review and experience based on long term tantalum capacitor manufacturing

2] **WP1200 manufacturing of the low ESR tantalum capacitor samples WP1200**

3] **evaluation testing WP1300**
 - The evaluation testing will follow the ETP steps as defined in WP1100

4] **results analysis WP1400**
 - The failure analysis as per WP1300 will be reviewed and modifications to the ETP, PID or other documents will be considered

The WP2 qualification will follow in two steps:

1] **manufacturing of improved test samples WP2100**
 - Qualification samples of the low ESR tantalum capacitors will be manufactured in accordance to the PID and documentation created and agreed in WP1400

2] **qualification testing WP2200**
 - The qualification testing will be performed in accordance to the new ESCC specification as defined in WP1.

3. PROJECT OUTCOME

3.1 Design of capacitors

Tantalum industry has developed a design approach to achieve the lower ESR parameter. The ESR depending to design parameter, such as tantalum powder, and second electrode materials/configuration, such as silver, leadframe material etc.. Single anode technology is using modification of these parameter to reduce the ESR in comparison to the standard range. The other approach is to use more anode elements within one capacitor body to get higher surface area and thus lower ESR.

New ESCC Detailed Specification No. 3012/004 (Capacitors, leadess surface mounted, tantalum, solid electrolyte, low WSR based on type TES), PID 100 and PID 100/004 were prepared by AVX/CZ and as creating and approved by ESCC executive management.

Smaller A,B, and C case capacitors are using single anode with optimised low ESR performance, larger D and E case sizes are using multianode design with more anode elements moulded in one capacitor body. The D case multianode is designed with two anodes in “mirror” configuration and the E case size three anodes in vertical configuration in order to optimise low ESR and high reliability requirements.

- **301200401B226KJ0900** – A22/6,3 single anode – typical X-ray view
- **301200404B226KV0100** – D22/35 “mirror” multianode typical X-ray view
3.2 EVALUATION TESTING

The first step of this project was to evaluate the low ESR capacitors with single anode and multianodes. The matrix of the low ESR capacitors was proposed for Evaluation testing. Evaluation test plan was defined on the basis of established standards. The main objective was to compare available standards for tantalum capacitors over the aerospace and military sector.

Compared standards:

- ESCC Basic Specification No.2263000, Issue 2
- ESCC Generic Specification No. 3012, Issue 1
- ESCC Detail Specification No.3012/001, Issue 2
- MIL-PRF-55365G, Amendement 2
- EEE-INST-002: Instructions for EEE Parts Selection. Screening, Qualification, and Derating, Addendum 1, 2008
- SRC9000 – Internal AVX Procedure
- ECSS-Q-ST-70-08 – Space product assurance – Manual soldering of high-reliability electrical connections, March 2009

Codes for Evaluation testing have been defined based on these rules:
- all case sizes - A, B, C, D, E
- all construction types (single anodes, standard multianode and mirror multianode)
- all rated voltages – 6, 10, 16, 20, 25, 35, 50 (V)
- all tantalum powder types

The matrix (TES) of the low ESR tantalum capacitors was proposed based on the European space manufactures requirements for aerospace, MIL standard parts and the technology readiness to meet the aerospace level. The initial TES matrix subjected for evaluation ESCC testing has been discussed continuously with European Aerospace suppliers. Based on this discussion 12V voltage range and E case size, 220 μF, 12V was added to the matrix. See below the TES matrix prepared for ESCC 3012/004 specification.

During the Evaluation testing it was confirmed that the codes with exception of E10/50 (originally proposed) would meet ESCC 3012/004 specification nevertheless there were identified some differences between the codes. Based on results of evaluation testing were made some design and process modifications to improve the codes with lowest margin to the specification. The results of these modifications were verified with additional testing and were proved as efficient As result the whole range of product was revised to apply the identified improvements to other codes. The E10/50 was removed from the product range due to exception results across more provided tests. On other hand we included to the matrix E220/12 based on customer requirements for this code and feasibility study made by AVX.
<table>
<thead>
<tr>
<th>Capacitance</th>
<th>Code</th>
<th>Rated Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>105</td>
<td>A-3000</td>
</tr>
<tr>
<td>3.3</td>
<td>335</td>
<td>B-1000</td>
</tr>
<tr>
<td>4.7</td>
<td>475</td>
<td>C-1000</td>
</tr>
<tr>
<td>10</td>
<td>106</td>
<td>D-0200</td>
</tr>
<tr>
<td>22</td>
<td>226</td>
<td>A-1800</td>
</tr>
<tr>
<td>33</td>
<td>336</td>
<td>B-0600</td>
</tr>
<tr>
<td>47</td>
<td>476</td>
<td>C-0350</td>
</tr>
<tr>
<td>100</td>
<td>107</td>
<td>D-0055</td>
</tr>
<tr>
<td>150</td>
<td>157</td>
<td>E-0045</td>
</tr>
<tr>
<td>220</td>
<td>227</td>
<td>F-0035</td>
</tr>
<tr>
<td>330</td>
<td>337</td>
<td>G-0035</td>
</tr>
<tr>
<td>470</td>
<td>477</td>
<td>H-0030</td>
</tr>
</tbody>
</table>

Fig. 1. TES – ESCC 3012/004 range of low ESR tantalum capacitors

Note: The letter indicate case size, numbers indicate Equivalent Series Resistance (ESR) in mΩ

3.3. QUALIFICATION TESTING

Qualification testing of the component has been done in accordance with the requirements of:

- Generic Specification ESCC 3012
- Detail Specification ESCC 3012 / 004
- ESCC Basic specification No.20100

<table>
<thead>
<tr>
<th>ESCC Part type</th>
<th>Code</th>
<th>Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>301200401B226KJ0900</td>
<td>A/22/6,3</td>
<td>Single anode</td>
</tr>
<tr>
<td>301200402B476KJ0500</td>
<td>B/47/6,3</td>
<td>Single anode</td>
</tr>
<tr>
<td>301200404B157MA0045</td>
<td>D/150/10</td>
<td>Multianode, mirror</td>
</tr>
<tr>
<td>301200405B227KB0035</td>
<td>E/220/12</td>
<td>Multianode</td>
</tr>
<tr>
<td>301200402B226KC0600</td>
<td>B/22/16</td>
<td>Single anode</td>
</tr>
<tr>
<td>301200405B107KD0045</td>
<td>E/100/20</td>
<td>Multianode</td>
</tr>
<tr>
<td>301200404B226MV0100</td>
<td>D/22/35</td>
<td>Multianode, mirror</td>
</tr>
<tr>
<td>301200405B336KV0065</td>
<td>E33/35</td>
<td>Multianode</td>
</tr>
<tr>
<td>301200403B335KT1000</td>
<td>C3,3/50</td>
<td>Single anode</td>
</tr>
<tr>
<td>301200404B475KT0200</td>
<td>D4,7/50</td>
<td>Multianode, mirror</td>
</tr>
</tbody>
</table>

The qualification samples were manufactured in accordance to the relevant PID documents.

Results of qualification: All tested part numbers pass the qualification in accordance to the ESCC specifications.

4.0. CONCLUSION

TES series have been qualified to meet requirements of ESCC 3012/004 detail specification. The matrix is significant improvement of maximum capacitance and lower ESR compare to the existing ESCC 3012/001 on solid tantalum chip capacitors.
Application for ESCC Qualification Approval

Component Details
- **Title:** Capacitors, leadless surface mounted, tantalum, solid electrolyte, low equivalent series resistance based on type TES
- **Executive Member:** ESTEC
- **Date:** 23rd August 2013

Components Submitted for Qual. App.

<table>
<thead>
<tr>
<th>ESA/ESCC COMP. NO.</th>
<th>VARIANTS</th>
<th>RANGE OF COMPONENTS</th>
<th>BASED ON</th>
<th>TEST VEHICLE / S</th>
</tr>
</thead>
<tbody>
<tr>
<td>3012/004</td>
<td>01 – A case size</td>
<td>1-470μF, 6,3-50V</td>
<td>TES</td>
<td>301200401B226JK0900</td>
</tr>
<tr>
<td></td>
<td>02 – B case size</td>
<td></td>
<td></td>
<td>301200402B476KJ0500</td>
</tr>
<tr>
<td></td>
<td>03 – C case size</td>
<td></td>
<td></td>
<td>301200404B157MA0045</td>
</tr>
<tr>
<td></td>
<td>04+ D case size</td>
<td></td>
<td></td>
<td>301200405B227KB0035</td>
</tr>
<tr>
<td></td>
<td>05 – E case size</td>
<td></td>
<td></td>
<td>301200402B226KC0600</td>
</tr>
</tbody>
</table>

- And all parts defined in ESCC 3012/004 issue 1 + DCR 810

Location of Manufacturing Plant
- AVX Czech Republic s.r.o. Tantalum Division Dvorakova 328 Lanskroun, Czech Republic

ESCC Specification Used for Qualification
- **Generic:** ESCC 3012 issue 2
- **Detail/s:** ESCC3012/004 issue 1 + DCR 810

PID Used for Manufacturing Qualification Lot
- **Ref No:** PID 100 issue1 (March 2011) + PID 100/004 issue 2 (December 2012)

PID Changes since Start of Qualification
- **Verified by:** L. Bonora
- **(Name of Executive Responsible)**
- **(Date):** 7-8 April 2009

Quality and Reliability Data
- **Evaluation testing:** Yes
- **Failure analysis, DPA, NCCS available:** Yes

Page 5 / 8
<table>
<thead>
<tr>
<th>Report Ref. No.:</th>
<th>Evaluation test report – project 40010504/10/NL/PA Additional test report - project 40010504/10/NL/PA CA 00623 - done by laboratory at ESTEC / February 2012 Results of DPA – September 2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equivalent Data:</td>
<td>Ref. Nos. and purpose:</td>
</tr>
<tr>
<td>Certification:</td>
<td></td>
</tr>
</tbody>
</table>
Non compliance to ESCC requirements:

<table>
<thead>
<tr>
<th>No.</th>
<th>Specification</th>
<th>Paragraph</th>
<th>Non compliance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional tasks required to achieve full compliance for ESCC qualification or rationale for acceptability of noncompliance:
Click here to enter text.

Executive Manager Disposition

Application Approval:
Yes ☐ No ☐

Action / Remarks:
Click here to enter text.

Date:
Click here to enter a date.

Signature, ESA Representative
Click here to enter text.
<table>
<thead>
<tr>
<th>Component title:</th>
<th>Appl. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Member:</td>
<td>Click here to enter text.</td>
</tr>
</tbody>
</table>

Click here to enter text.