ESA – NPI project

Gaudenzio Meneghesso Enrico Zanoni

UNIVERSITY OF PADOVA

Department of Information Engineering

Via GRADENIGO 6/B

35131 PADOVA, ITALY

Tel. +390498277653

Tel. +390498277658

Fax. +390498277699

Mobile: +39 3346957885

e-mail: gauss@dei.unipd.it

e-mail: zanoni@dei.unipd.it

NPI project

NPI project between University of Padova and ESA-ESTEC

GaN HEMT Reliability Assessment and Identification of Degradation Mechanisms

CONTR. ESA-P CONTRACT N. 4200022782

Objectives

The objectives of this project were to complement and augment the conventional Arrhenius based reliability evaluations that have been carried out within GREAT².

- Study the failure modes and mechanisms of tested GaN EHMTs related with the application of high drain-source voltages, by means of short tests;
- Develop techniques for the fast evaluation of GaN HEMT reliability, and confirm their accuracy by correlating them with conventional "long-term" accelerated test methods;
- Build a data base concerning failure modes of tested GaN HEMTs, and define rules on how to identify them.

People

University of Padova, Dept. of Information Engineering

- professor Enrico Zanoni
- professor Gaudenzio Meneghesso
- microelectronics group

ESA-ESTEC, TEC-QTC section

- Andrew Barnes
- Fabio Vitobello

Activity on GaN HEMT devices

3 years activity in Padova and in ESTEC laboratories

2 years activity by Antonio Stocco:

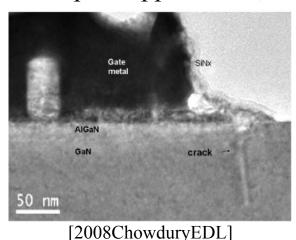
- > ESTEC 1° placement (2 months): procedure standardization
- > ESTEC 2° placement (3 months): DC step-stress on GH50 tech.
- ➤ Padova activity: characterization, storage tests, DC life-tests on GH50 tech.

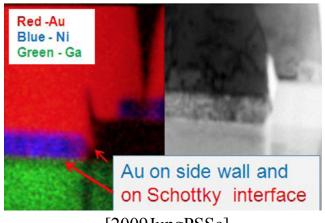
1 year activity by Alberto Zanandrea:

➤ ESTEC 3° placement (7 months): reliability on GH25 technology and RF step stress set-up implementation

OUTLINE

- Literature review on GaN HEMT Physics of failure
- Test plan definition
- Thermal characterization
- Reliability tests on AlGaN/GaN ESA devices
- Storage tests
- Long-term reliability tests
- Reliability tests on GH25 technology




Literature review on GaN HEMT physics of failure

Studies on GaN HEMT reliability physics and reports on industrial activities, testify a general trend towards a better understanding of failure mechanisms and of the way to control them.

Nevertheless, still there are a series of issues which need to be solved to achieve full GaN HEMT reliability:

- the origin of the time dependence of the gate leakage degradation mechanism;
- the failure mechanisms related with on-state operation;
- the effect of surface oxidation, oxygen indiffusion or possible corrosion effects;
- the effects of RF overstress and ESD should be studied;
- for space applications, the study of radiation hardness.

[2009JungPSSc]

Test Plan

- 0 Characterizations over temperature (in ESTEC) ✓ completed
- 1 Storage tests (in Padova) ✓ completed

 1000-hours storage tests on 9 PCM at 3 temperatures
- 2 DC step stress tests (in Padova and in ESTEC) ✓ completed

 DC step stress on 6 PCM at 3 bias conditions
- 3 DC life tests (in Padova) ✓ completed
 1000-hours DC life tests on 9 packaged devices, on 3 bias conditions (same T_J)
- 4 RF step stress tests (in ESTEC)

 RF step-stress on 4 PCM, at 2 bias conditions increasing gain compression
- 5 RF life tests (in ESTEC)
 1000-hours RF life tests on 9 packaged devices, at 3 bias conditions (same T_I)

Test Plan: Procedure standardization

Standardization of the measurements procedure of the two labs for a correct data exchange during the following reliability tests.

- ✓ DC measurements
 - when main electrical parameters (I_{DSS}, g_m, V_{TH}, leakages)
- ✓ Pulsed measurements at different quiescent points
 - Slump Ratio
- ✓ Redefinition of test-plan details

Thermal characterization

Temperature characterization: T range from -50°C to 125°C.

- ✓ DC measurements
 - \$\times\$ main electrical parameters (I_{DSS}, g_m, V_{TH}, leakages)
- ✓ Pulsed measurements on big devices
 - Slump Ratio
- ✓ RF measurements

- Reduction of I_{DS} and gm and an increase of R_{ON} (mobility reduction)
- decrease of all RF performance (MAG: -0.02 dB/°C)
- Reduction of current collapse effect (6-8% S.R. increase)

Reliability tests on GH50 technology

Activity of the second placement in ESTEC laboratories

Intense reliability campaign by means of short-term step-stress tests, with the aim of identifying the voltage operating limits of this technology, and the main failure mechanisms involved.

- OFF-state condition $(V_G = -7V);$
- SemiON-state condition $(V_G > V_{TH})$;
- ON-state condition $(V_G = 0V)$;

- ∜ very good OFF-state robustness up to around 220V
- ♥ semi ON-state robustness around 160V
- ∜ Increase of the failure voltage with increasing temperature
- \$\\$\ emission spot move close to the drain

Storage tests

Storage tests performed on ESA PCMs at 4 different temperatures

\$\text{\text{understand}}\$ understand the highest temperature that a technology can withstand without showing any variation of the device performances;

\$\to\$ how performances degrades along the time at different temperatures;

\$\ighthrow\$ identifying which effects are thermally activated.

T: 375°C, 350°C, 300°C, 325°C

(325 °C added to better understand the previous tests)

Main Achievements:

- ♦ 375°C: more than 80% have reached the failure criteria in 1 hour (gate leakage); Small variation of other parameters (<10%);</p>
- \$\\$\\$ 350°C: less severe but similar to 375 (3-5 hrs reach the failure);
- \$\square\$ 325°C and 300°C: gate leakage first increases but then recovers to the initial gate current level after 1000 hrs of stress.

(SEM analysis is ongoing at ESA to understand the degradation Mechanisms)

Long term reliability tests

DC life-tests performed on 9 large-periphery packaged devices

- to better understand the factors that limit the reliability of this technology on long time scale;
- to investigate how degradation effects induced by the bias condition are accelerated by the high test temperature,
- \$\to\$ to estimate the device life-time in any real operating condition.
 - OFF-state condition
 - semiON-state condition
 - ON-state condition

- $\$ Very good robustness after 2000h at T_i = 175°C
 - 1. Very stable main performances (within 5% change)
 - 2. Small right threshold voltage shift (possibly thermally activated)
 - 3. No leakage current increase (no gate-edge degradation)
 - 4. Stable dynamic performances

Reliability tests on GH25 technology

Activity of the third placement in ESTEC laboratories

Analysis of the stability of GH25 technology (Milestone 3)

- \$\top \complete characterization campaign, including basic DC analysis, double pulse measurements, and S-parameters characterization;
- study of the device breakdown, with current-controlled measurements and off-state step stresses;
- blong-term reliability DC tests along the typical load-line.

- ➡ Mature and reproducible technology process (DC, pulsed, RF);
- ♦ Off state step stress up to 200 V show some increase of gate leakage;
- Life test: three bias point (at 423 K) has been considered (Class A, B, and high current):
 - 1. Degradation has been observed only in class A in 100 hrs
 - 2. No degradation in the other bias points even after 300 hrs.

