

Printed electronic interconnection techniques

EMPPS - May 21st 2014

Neil Chilton PhD

Technical Director, Printed Electronics Limited (PEL)

Contact – <u>neil.chilton@printedelectronics.co.uk</u>

© PEL 2014 Printed Electronics Ltd, www.printedelectronics.com

Printed Electronics Limited (PEL) General Overview

Printed Electronics Limited provides inkjet printed circuits and hybrid systems for your real-world products:

From product demonstrator, through prototype, to production.

Printed Electronics Expertise

- Rapid prototyping
- Material deposition of multilayer electronics
- A wide variety of electronic materials
- Advanced formulation for nanomaterial inks
- High reliability circuits, sensors and systems
- Specialist training in printed electronic methods
- Software and hardware development

PEL Electronic Grade paper substrate

 A specialist paper substrate for inkjet-printed nanometals delivering best-in-class electronic performance with low temperature or photonic curing.

The PEL Toolkit

 Printable and hybrid circuit library includes: Conductive interconnects Dielectrics, Resistors and Capacitors, Light emitters and power sources.

invotec

- Founders Dr Steve Jones, Dr Neil Chilton
- Team of 11– PhD, MSc and BSc level
- PEL is an integration, process, materials and product development company
 - product development for clients: prototype through to production quantities. Includes system development with partners.
- PEL Consultancy and Training courses:

Printed Electronics & Inkjet Electronics and Integration

- Inkjet-electronics and material deposition expertise:
 - Direct circuit printing, Material deposition, Composite device fabrication
- Partnership with Invotec Circuits, the UK's largest manufacturer of PCBs.
- Offices in Tamworth and Cambridge UK

www.printedelectronics.com

© PEL 2014

Printed Electronics Ltd,

PCB Partnership - Invotec Group

- PEL is an independent company that operates in its own lab and office space within Invotec's manufacturing site:
 - Invotec are the UK's leading technology PCB and interconnect company; in continuous operation since 1986
 - A focus on challenging leading edge products
 - High technical capability Invotec are ESA approved

© PEL 2014 Printed Electronics Ltd,

PEL's main application areas

Circuit Interconnect and Integration	Smart Packaging	Sensors and Medical		
High Value, Unique function	R&D for Defence/Aero	Wearable		

© PEL 2014 Printed Electronics Ltd,

Printed Interconnects

- Much of the work that PEL undertakes is related to printing interconnects: the conductive lines that form the circuits, antennae, passive components etc
- "Printed Interconnects" are not new, every PCB (Printed Circuit Board) on the planet has them – but the entrenched technology uses lithography, subtractive etching and chemical plating

Printed Electronics Ltd

Is it possible (or sensible) to replace a PCB substrate with a "printed" version?

© PEL 2014 Printed Electronics Ltd,

i.e. comparing...

- PCB
 - high reliability multilayer

- Printed interconnect:
 - Inkjet printed silver on paper

© PEL 2014 Printed Electronics Ltd,

www.printedelectronics.com

VS.

Low cost nano-metal printer

- PEL starter system for inkjet evaluation purposes
- Specialist nano inks available
- Print silver,
 copper, gold etc
 using nano inks

Desktop Printing of Room Temp Cure Ag nano ink

© PEL 2014 Printed Electronics Ltd,

Inkjet-Printed circuits and antennas Process time < one hour

Cu test circuit

Ag circuit on paper

© PEL 2014 Printed Electronics Ltd, www.printedelectronics.com

Useful for Rapid Prototyping

- Inkjet printed circuitry
 - Manufactured in less than
 5 minutes
- SMT placement
 - ~minutes to complete
 - Using conductive epoxy (not solder)
- Pictured design Included (not shown):
 - Printed switch
 - Printed Battery
 - OLED
- Design to Manufactured Product ~hour

© PEL 2014 Printed Electronics Ltd, w

Inkjet Printed Circuitry

Benefits

- Tool-less rapid prototyping
 - CAM to Print in seconds
 - Ultra fast manufacturing lead-time
- Adaptive every part can be different.
- Batch and security markers can all be added to the part *during print*
- (Single layer) Printing straightforward
- Compatible with R2R
- High speed print (~m/s), capable of very high volume.
- Compatible with thin substrates (all automated handling)
- Low temperature (energy) processing
- Can use **low cost substrates** (paper and plastics)

Problems

- Conductor height: thin usually less than 1um.
 - Suitable only for Low Power Electronics
 - Lower reliability
- Fine Line Printed features are challenging
 - Dimensions >> equivalent in lithography
- Multilayer printing is substantially more difficult than single layer
- Nano materials (inks) are expensive (thousands of \$ / litre)
- Inkjet is inherently less reliable than lithography
 - Nozzles will block or misfire
 - Need inline scanning

A focus on areas that may be beneficial to ESA applications

Reel to Reel (R2R) for long circuits

- Using R2R process very long circuits
- Not limited by conventional panel dimensions

 Sensors, cable printing etc

Non-Contact Printing e.g. Inkjet-printed metallic circuits

- Thin substrates (as thin as 12um) have been printed successfully.
- Make use of both surfaces: print on 2 sizes of material
- Very lightweight

		Material				Teijin Films		
		Thickness				12 micron		
		Tensile		310 Mpa		a		
Property	Test Method	Unit	PEN	PI	PEI	PPS	PET	
Tensile strength	JIS C-2318	MPa	280	280	110	220	230	
Tensile elongation	JIS C-2318	%	90	80	80	60	120	
Continuous use temperature (mechanical)	UL-746B	deg C	160	200	170	180	105	
Continuous use temperature (electrical)	UL-746B	deg C	180	240	180	180	105	
Glass transition temperature (film)	deg C	155	-	212	90	110		
TDFJ method by DMA								
Melting point	DSC	deg C	269	-	-	285	258	
Dielectric breakdown voltage	JIS C-2318	kv/mm	300	280	140	320	280	.5% at 200C
Dielectric constant	JIS C-2318	-	2.9	3.3	3.2	2.8	3.1	nin (de color)
Water absorption	TDFJ method	%	0.3	1.3	0.3	0.02	0.4	IIII (dependent on
Density	JIS C-2151	g/cm3	1.36	1.43	1.27	1.35	1.4	retreatment)
Flammability	UL-94		VTM-2	V-0	V-0	VTM-0	VTM-2	

http://www.teijindupontfilms.jp/english/product/hi film.html

Ultra-fine-line features (~1um)

SIJ – Super InkJet

Note - PEL represent SIJ

- Fixed single nozzle printer
- 5um line real time printing

3um line on 15um
 pitch – real time
 video of printing

© PEL 2014

Printed Electronics Ltd,

Printed Electronics Ltd,

Printing onto 3D objects

PEL-developed proof of concept inkjet printing system for curved surfaces.

PEL SYSTEM

3D Circuit Printing

- Four axis system to <u>digitally</u> print onto curved surfaces
- Printed cones, bottles and cylinders
- Digitally prints high viscosity inks (e.g. as per screen printing).

Interconnects using Fabric

For lightweight & robust wearable applications PEL are partnered with NEL Ltd (UK) to utilise their Neltex[®] material range with PEL's printed electronic interconnects.

Neltex®

Printed Electronics Ltd,

© PEL 2014

Lightweight and foldable

Feature	Value
Weight per m ⁻²	62g (70um thick)
Resistance of trace (Ohms per Sq)	~30mOhm/square
Thread filaments	165 / cm

Breaking Test (Tensile Strength) : Warp direction --- per 5cm strip minimum 26kg Weft direction --- per 5cm strip minimum 26kg - Breaking strength of unplated fibre 130Mpa

© PEL 2014 Printed Electronics Ltd,

Neltex structure

- Each fibre of the weave is plated and fully encapsulated with metal (Ni, Ag, Cu etc)
- It can be folded and repeatedly stressed with relatively low change in resistance.

© PEL 2014

Printed Electronics Ltd,

www.printedelectronics.com

Metal plating around each fibre

SEM Images After Liquid N₂ Fracture

Sample 1 x 35

Severe stress testing

• Possible application - foldable and extensible antenna

Neltex®

© PEL 2014 Printed Electronics Ltd,

Resistance vs load (after severe tests)

Testing to near failure results in breakage of some of the plating <u>around</u> the fibres in the weave but the elastic fibres remain connected.

Therefore when the material relaxes again resistance falls back to a useable value (for wearable applications at least)

Summary

- Printed Electronics (*the field* as well as *the company*) relies on good collaboration. PEL welcomes the opportunity to collaborate in this area.
- Printed electronics calls for <u>multiple</u> deposition (printing) methods.
 - Inkjet, femto-litre deposition (Super Inkjet), Drop on demand nozzle dispensing, screen, R2R etc
- Done correctly, printed methods can add electronic function to objects where conventional electronics could not.

Conclusion

- Printed Electronics is **absolutely not** a replacement for conventional electronics: It is not generally robust enough especially for ultra-high reliability applications such as ESA topics.
- However there are areas where the benefit of being able to digitally print very long circuits on lightweight substrates may be useful.
- Where weight and robustness is crucial, e.g for origami or folding electronics, the use of fabrics together with flexible connections may be useful for the space industry.
- Printed interconnects at 1um level in 2D and 3D (e.g. SIJ) may be potentially used for attachment and novel electronics.
- Please remember that this is very early and further work would be required to determine robustness criteria for these materials and methods.

Thank you & Questions

© PEL 2014 Printed Electronics Ltd,