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1 Abstract 
From January 9 to January 13, 2012, and from April 16 to April 20, 2012, we performed 
heavy ion test campaigns with DDR3 SDRAM and NAND Flash devices at RADEF, Jyväsky-
lä, Finland. This document reports on the findings for DDR3 SDRAM devices. 

2 Test coverage 

2.1 General remarks 
SDRAM is designed for use in ground mass memories and is also used in space mass memo-
ries, where they compete with single level cell (SLC) NAND-Flash. The usual Reed-Solomon 
error correction (RS-ECC) is very effective against sparsely distributed single event upsets 
(SEU), which therefore are of minor concern. 

Therefore, the data integrity of SDRAM and NAND-Flash based space mass memories is de-
termined mainly by radiation induced breakdown of the device functionality, in case of 
SDRAM several types of SEFI, in particular device SEFI, and in case of NAND-Flash several 
types of SEFI including device SEFI and in particular destructive failures (DF). 

Device SEFIs cause a transient or persistent blocking of the device functionality, but no phys-
ical destruction. Device SEFIs can be resolved by corrective actions, sometimes by reset 
measures and always by power cycling. 

Power cycling destroys the data contents of SDRAMs, in contrast to Flash. 

NAND-Flash is prone to destructive failure, in contrast to SDRAM. The main reason for this 
is the on-chip high voltage (≈ 20 V) generation and distribution. 

Both NAND-Flash and SDRAM combine the storage array with an on-chip processor, which 
controls various operation sequences. The existence of the on-chip processor gives rise to the 
implementation of several modes of device operation and of device communication with the 
memory controller. 

Examples for the tested DDR3 SDRAM devices are: auto-refresh vs. self-refresh mode, burst 
lengths, DLL on or off, and various timing parameters. 

In consequence, it is not possible to achieve full test coverage over all operational mode com-
binations of the respective device within the given beam time restrictions. Instead, only a sub-
set of operational conditions can be tested, which is believed to be more or less representative 
for future device applications. 

The synchronous high data rate communication with the memory controller implies a tight 
coupling between the SDRAM device and its external controller. Details of the interaction 
between device and controller can cause significant modifications of the error image. 

If, such as in this campaign, a survey of the devices on the market is intended, the test cover-
age necessarily is even more restricted. What the survey can deliver is an assessment of the 
general usability of these devices in the space radiation environment, in particular in compari-
son to the competing NAND-Flash. 

The gained test data show that state of the art commercial DDR3 SDRAM are strong candi-
dates for the implementation of space mass memories. The parts of the different manufactur-
ers are fabricated according to a common JEDEC specification of their functionality to be 
interchangeable for ground applications. Nevertheless we see differences in their SEE re-
sponse, which reflect differences in the chip design. 
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In view of any real application we do strongly recommend to test the device chosen for 
that application again under the exact conditions of the respective application, in partic-
ular with respect to its specific operational mode and in combination with the intended 
memory controller. 

2.2 Specific remarks 
As already mentioned, the SEE performance of the SDRAM devices is mainly determined by 
their sensitivity to SEFIs, especially to device SEFIs. Proper device operation depends on the 
writable contents of several on-chip control registers. Corruption of the regular contents caus-
es severe disruptions of the device functionality, which appear as SEFI in the retrieved data. A 
recommended countermeasure is software conditioning, namely a periodic rewrite of the con-
trol registers. In this test, the rewrite was performed every row for the read and write/read 
mode tests, or every second for the storage mode tests. By comparison with test runs without 
software conditioning, we proved the effectiveness also in our case. 

Accordingly, we tried to get test runs with software conditioning over the full LET scale, be-
cause we assume that the advantage by software conditioning will be exploited in space appli-
cations. As expected, software conditioning only has a minor influence on the SEU cross sec-
tion. But it provides a significant improvement of the SEFI cross sections. 

Main attention was given to the 4-Gbit devices of Elpida and Samsung, and also to the 2-Gbit 
devices of Samsung, revision D, and Micron. Unfortunately, Elpida went out of business. 
Samsung is the major player. Micron is another important supplier using a different chip de-
sign. Additional tests were performed for the 2-Gbit Hynix and the 2-Gbit Nanya device. 

Removal of device SEFIs by power cycling destroys the stored data. Therefore, it is of interest 
to circumvent this “ultima ratio” by less intrusive reset measures. Respective tests were per-
formed and show substantial differences between the investigated DUT types; however, the 
results have poor statistics due to the low number of observed SEFI events. 

3 Test setup 

3.1 DUTs 
We tested 7 devices from 5 manufacturers, as shown in table 1. All tested devices had been 
thinned from an initial thickness of approximately 300 µm to 60 µm. For the Samsung 2-Gbit 
parts, two die revisions were tested: die revision D is produced in 35-nm technology, while 
die revision B is produced in the previous generation technology (≈50 nm). 

Table 1: tested DUTs 

Manufacturer and part number Capacity Lot code Date code Samples Notes 

Elpida J4208BASE-DJ-F 4 Gbit 0WPEY00 1044 3  

Samsung K4B4G0846B-HCH9 4 Gbit GMD02390 1125 3  

Samsung K4B2G0846B-HCH9 2 Gbit GLJ423AC 0949 2  

Samsung K4B2G0846D-HCH9 2 Gbit GEB701GES 1113 8  

Hynix H5TQ2G83BFR-H9CR 2 Gbit DTK89426H3 1046 3  

Micron MT41J256M8HX-15E:D 2 Gbit BY8F416.21 
BYFCM91.21 

1116 
1006 

1 
4 

 

Nanya NT5CB256M8BN-CG 2 Gbit 01340100GP 1026 1  
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05142700FP 1110 1 

In the January test, all of the parts in table 1 were tested. In the April test, only 4-Gbit Sam-
sung, 2-Gbit Samsung (revision D) and 2-Gbit Micron parts were tested. 

Table 2 shows the die area per bit and a photo for the different parts that were tested. 

Table 2: die area per bit for different DDR3 parts 

Manufacturer Capacity Comments Die area per bit [cm²] Photo 

Elpida 4 Gbit  2.2·10-10 

 

Samsung 4 Gbit  1.6·10-10 Not available1 

Samsung 2 Gbit Revision B 3.9·10-10 

 

Samsung 2 Gbit Revision D 1.6·10-10 

 

Hynix 2 Gbit  2.8·10-10 
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Micron 2-Gbit  3.5·10-10 

 

 
Or similar2 

Nanya 2-Gbit  3.4·10-10 

 

1 No photos are available of this part because all available samples with the same lot code have been thinned. 

2 The 4-character text on the left side of the package may be different. Details are not available because the sam-
ples have been thinned. 

3.1.1 DUT preparation 

DDR3 silicon dies are encapsulated in flip-chip plastic ball grid array (BGA) packages in or-
der to reduce the lead inductance (figure 1). Before irradiation, and because of the limited 
range of the used heavy ions, the plastic has to be removed down to the back surface of the 
die, and the die may have to be thinned, depending on the available ion range. 

 
Figure 1: exemplary cross section of a DDR3 device 

The thinning of the devices was performed by Institut für Werkzeugmaschinen und Fertigung-
stechnik (IWF), TU Braunschweig, for some of the devices, and Fraunhofer-Institut für An-
gewandte Optik und Feinmechanik (IOF) for the rest of the devices. The IWF process is de-
scribed as follows: 

[The] plastic above the back surface of the die and a large part of the plastic rim 
around the edges of the die are removed by wet chemical etching. Thereafter the die is 
found to be not exactly flat but warped. The surface height varies by up to 40 µm. The 
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height contour is measured, and the rotating blade tool used for grinding follows the 
measured contour. 

The IOF thinning process is described by IOF as follows: 

[The method] enforces the die in an exactly flat position. This supports grinding and 
polishing without the need for contour following of the abrasive tool. At first, the layer 
thickness of the plastic encapsulation and the silicon die to be grinded is determined, 
based on the cross section of a sample chip. The devices are bilaterally puttied between 
glass plates. Planarity and parallelism of the chip surface during the mechanical pro-
cessing is guaranteed by fixing the devices between the glass plates. The deployed ma-
chine used (DISCO DAG 810) enables a thickness tolerance of 5 µm. 

In the first grinding work step, plastic layer and glass plate were grinded down to the 
silicon surface of the DDD3 chip. After reaching the silicon surface, the target thickness 
of the silicon die is entered to the machine and, after that, the silicon die as well as the 
plastic encapsulation are thinned. Inevitably, the grain size of the tool must be carefully 
adapted for the silicon material. If the grain size is too rough, microscratches due to the 
high mechanical stress lead to imperfections in the functionality up to the destruction of 
the DDR3 chip. 

Figure 2 shows a mechanical cross section of a DDR3 device. 

 
Figure 2: mechanical cross section of a DDR3 device (IOF/IDA) 

3.2 Test facility 
The tests were performed at the Radiation Effects Facility (RADEF) in the Accelerator Labor-
atory of the University of Jyväskylä, Finland. The used 9.3 MeV/amu ion cocktail is described 
in table 3. The depth of 55 µm assumes a die thickness of 60 µm and a depth of the active 
layer of 5 µm beneath the back surface of the thinned die. 
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Table 3: RADEF 9.3 MeV/amu ion cocktail 

Ion Energy [MeV] Range [µm] LET [MeV cm2 mg-1] 

   Bragg peak Surface 55µm 
15N4+ 139 202  5.9 1.83 2.16 
20Ne6+ 186 146 9.0 3.63 4.50 
30Si8+ 278 130 14.0 6.40 not used 
40Ar12+ 372 118 19.6 10.2 12.94 
56Fe15+ 523 97 29.3 18.5 25.26 
82Kr22+ 768 94 41.0 32.2 39.83 
131Xe35+ 1217 89 69.2 60.0 68.69 

 

3.3 Test bench 
The test bench, RTMC6 (figures 3 and 4), is capable of operating one DDR3 DUT in x4 or x8 
configuration at a clock frequency of up to 400 MHz. It is based on a Xilinx ML605 evalua-
tion board, which contains a Xilinx Virtex6 FPGA. 

 
Figure 3: an overview of the RTMC6 test bench (simplified) 
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Figure 4: the RTMC6 head station with an opened DDR3 device in the ZIF socket 

The ML605 is equipped with a small outline dual inline memory module (SODIMM) socket 
designed for commercially available memory modules. Since thinned devices cannot be sol-
dered, we developed a DUT adapter which connects to the SODIMM slot and contains a zero 
insertion force (ZIF) FBGA socket suitable for DDR3 SDRAM devices. The DUT adapter 
also contains circuitry for switching power to the DUT. 

The FPGA contains a custom test design which writes a constant, counting or pseudo-random 
pattern to the DUT, reads the data from the DUT and compares it to the original pattern. If the 
data is different from the pattern, an error vector is generated and transmitted to a PC via a 
high speed USB connection. Since the DUT has a higher data transfer rate than the USB con-
nection, error vectors have to be buffered in a FIFO in order to be able to handle large runs of 
consecutive errors without slowing down the test. If the error record FIFO overflows due to 
too many errors, error vectors are discarded. 

The DUT is controlled by a custom memory controller. This memory controller provides fine-
grained control of the DUT and allows performing operations such as writing the mode regis-
ters, resetting the DLL of the DUT or calibrating the termination resistance at arbitrary times. 
It interfaces with Xilinx’ DDR3 PHY (the lowest DUT interface design layer). 

On the PC, an error map is displayed for preliminary visual analysis, along with a total error 
count and various statistics. The error vectors are stored on a hard disk for offline analysis. 

3.4 Test sequence 
Several test modes are available in order to test the behavior of the device in different situa-
tions: 

 Storage mode: before irradiation, the pattern is written into the DUT and read in order 
to determine hard errors. After irradiation, the contents of the device are read and 
compared to the pattern. 

 Read mode: before irradiation, the pattern is written into the DUT and read in order to 
determine hard errors. During irradiation, the device is continuously read. 
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 Write/read mode: before irradiation, the pattern is written into the DUT and read in or-
der to determine hard errors. During irradiation, the device is continuously written and 
read. 

3.5 Software conditioning 
All test modes can be performed with and without software conditioning1. Software condi-
tioning consists in a configurable set of operations performed at regular time intervals (storage 
mode) or after a regular number of read/written pages (other modes). The available operations 
are: 

 Rewriting the mode registers, containing the DUT configuration 

 Resetting the DLL internal to the DUT 

 Recalibrating the data line termination resistance (ZQ calibration) 

3.6 Error classification 
Several error classes are distinguished, according to the overview shown in figure 5: 

 
Figure 5: error classification overview 

 SEUs are isolated single-bit or multi-bit errors. An SEU is called a hard SEU if it can-
not be removed by writing the cell again. All other SEUs are called soft SEUs. In con-
trast to soft SEUs, a hard SEU cannot be removed by scrubbing. 

 Row SEFIs and column SEFIs are errors that corrupt a single row or column, respec-
tively. The row or column may be corrupted completely or in part. 

 Device SEFIs are errors that corrupt a whole device or an extended region of a device. 
Some device SEFIs can be removed by one of the operations that are also used for 
software conditioning. These operations do not result in data loss. Other device SEFIs 
can only be removed by resetting the DUT. The specification does not guaranteed data 
retention in this case, but in practice, no data loss has been observed. Some device 
SEFIs can only be removed by power cycling the DUT, which always causes data loss. 

An example error map, containing SEUs, row SEFIs and column SEFIs is shown in figure 6. 

                                                 
1 For historic reasons, software conditioning has sometimes, and inaccurately, been referred to 
as “reinitialization”. 
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Figure 6: an error map showing row SEFIs, column SEFIs and SEUs 

4 Test procedures and test results 
In the January test, the influence of software conditioning was examined. In the April test, all 
tests were performed without software conditioning due to the limited available test time.   

A pseudo-random pattern was used for all tests. 

4.1 Cross sections 
The complete cross section data is hard to visualize, as discussed in appendix A. We therefore 
present an overview and some conclusions in this section. The complete cross section data for 
all parts, LETs, test modes, error classes, test campaigns, and with/without software condi-
tioning, is shown in appendix A. 

For SEU cross section charts, the approximate die area per bit (see table 2) is also shown. 

Not all cross section test data is complete; values may be missing for a variety of reasons: 

 Due to test time constraints, it is not possible to exhaustively test every part at every 
LET and in every test mode, with and without software conditioning. Therefore, some 
runs had to be skipped in order to get broader results. Preferably, runs were skipped 
for parts that are considered less relevant, for example because they are outdated. 

 For tests in storage mode, if a device SEFI occurs, no SEU, row SEFI, and column 
SEFI cross sections are available because they are hidden by the device SEFI. Gener-
ally, multiple runs were performed in such a case, but sometimes, every run resulted in 
a device SEFI. 

 For some parts tested in 1/2012, only a single measurement was performed in 4/2012 
in order to verify the agreement of the measurement. Generally, the results are in good 
agreement. The only exception is the 4-Gbit Samsung part in write/read mode, where, 
for unknown reasons, for some of the LETs, the DUT measured in 4/2012 delivered a 
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2-Gbit Samsung (D) 2 1 1 1 

2-Gbit Hynix 1 3 2 1 

2-Gbit Micron 2 5 4 2 

2-Gbit Nanya Not enough data 

 

4.1.2 Effects of software conditioning 

Software conditioning was performed after every row for read and write/read mode tests, and 
once per second for storage mode tests. 

Software conditioning has no effect on the SEU cross section for any part (see section 6.3). 

The row SEFI cross section is slightly decreased by software conditioning for the 2-Gbit (re-
vision D) and 4-Gbit Samsung devices (sections 6.3.11 and 6.3.9). The same is true for the 2-
Gbit Micron (section 6.3.13) and Nanya (section 6.3.14) parts, but these devices were only 
tested at one single LET. 

Column SEFIs are completely removed by software conditioning for the 4-Gbit Samsung part 
(section 6.3.16; column SEFIs were only observed in write/read mode). The 2-Gbit Hynix part 
only had column SEFIs at the maximum LET, where software conditioning was effective 
(section 6.3.19). For the 2-Gbit Micron (section 6.3.20) and Nanya (section 6.3.21) parts, the 
column SEFI cross section was severely reduced, but these devices were only tested at one 
single LET. 

The device SEFI cross section is reduced severely by software conditioning for the 4-Gbit 
Elpida part (section 6.3.22). For the 4-Gbit Samsung part, the cross section is not significantly 
reduced (section 6.3.23), but note that the device SEFI cross section for the Samsung part 
without software conditioning is already about the same as for the Elpida part with software 
conditioning. For all other parts, the results are inconclusive. 

The full comparison of tests with and without software conditioning is shown in section 6.3. 

4.2 SEFI mitigation 
Seeing that software conditioning can reduce the device SEFI cross section, the question aris-
es whether software conditioning can also remove a device SEFI condition after it occurred, 
as opposed to preventing it. 

In order to assess this question, we irradiated various parts at different LET in different modes 
without software conditioning until a device SEFI or a sufficient number of row/column 
SEFIs had occurred. We then stopped the irradiation and performed different software condi-
tioning measures in varying order, writing and reading the device after every measure, until 
the SEFI was no longer present. 

The measures we used are (cf. section 3.5): 

 Rewriting one of the four available mode registers (MR0, MR1, MR2, MR3). The 
mode register values follow from the mode of operation (timing parameters etc.), 
which does not change for our controller. 

 Performing a long ZQ calibration (ZQCL). Note that a short ZQ calibration is per-
formed every 128 milliseconds at all times by the controller, as suggested by the 
standard ( [5], section 5.5.1). 
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 Resetting the DLL of the DDR3 DUT. This is achieved by writing bit 8 in MR0. Since 
it is not possible to access individual mode register bits, this always includes rewriting 
MR0. 

 Resetting the DUT (DR). This is followed by a full initialization sequence ( [5], sec-
tion 3.3.2) 

 Resetting the PHY of the memory controller (PR). In addition to a DUT reset and the 
associated initialization sequence, this causes a recalibration of the line delays. 

 Power cycling the DUT (PC) for 100 ms. This also necessitates a PHY reset and DUT 
reinitialization. 

The measures can be classified in three groups, according to their impact on the stored data, as 
follows: 

 Group A: MR0, MR1, MR2, MR3, ZQCL, and DLL reset. These measures may be 
performed by the controller at arbitrary times (subject to timing constraints) without 
affecting the data stored in the DUT ( [5], section 3.4.1). 

 Group B: DUT reset and PHY reset. These measures are not guaranteed to retain data. 
In practice, however, not data loss was observed. Note that during PHY initialization 
(performed after PHY reset), the PHY overwrites the first eight memory words with a 
test pattern (0xFF00AA5555AA9966) for performing line length calibration. 

 Group C: power cycle. This measure invariably destroyed all data stored in the DUT. 

We typically performed the measures on order from lowest to highest expected probability of 
success, in order to be able to determine the ineffectiveness of as many measures as possible 
without prematurely removing the SEFI condition. A typical sequence was therefore: ZQCL, 
MR3, MR2, MR1, MR0, DLL reset, device reset, PHY reset, power cycle. This order was not 
strictly adhered to in order to test different measures in different situations. Sometimes, all 
Group A measures were performed together in a sequence similar to what is performed during 
device initialization. 

It is worth noting that in some cases, different SEFIs seemed to be present in the DUT at the 
same time. It is possible that one measure removes some of the errors, but not others. 

An example is run 1074: a 4-Gbit Elpida DUT was Nitrogen in write/read mode. After a flu-
ence of 1.6 · 104 cm-2, a device SEFI occurred and the irradiation was stopped. ZQ calibration, 
rewriting mode register 3, rewriting mode register 2 and rewriting mode register 1 did not 
have any effect (the DUT was written and read after each measure). Rewriting mode register 0 
removed the device SEFI, and a row SEFI remained. DLL reset (again writing and reading 
afterwards) did not have any effect. Finally, a device reset removed the row SEFI. 

All runs used in this section showed persistent SEFIs; that is, they were present even after 
rewriting the device. SEFIs that could be removed by rewriting the device were not examined. 

4.2.1 Individual measure effectiveness 

Figures 12 to 20 show the effectiveness of the individual measures, i. e. the number of times a 
measure was effective in resolving a particular SEFI class, divided by the number of times a 
measure was attempted in the presence of such a SEFI. “All group A” describes all measures 
of group A performed together, without considering the individual measures. 

ZQ calibration never caused a change. Note, however, that for some parts, it was never per-
formed individualy. 



 

 

20

For most parts, rewriting MR0 removed the SEFI condition for in some cases, but not in oth-
ers. 

For most parts, rewriting MR1 removed the SEFI condition in some cases, but not in others. 

For the 2-Gbit Hynix and 2-Gbit Micron parts, rewriting MR2 removed the SEFI condition 
in some cases, but not in others. It did not have any effect for any other part. In one case with 
a 2-Gbit Micron part, additional column SEFIs were present after rewriting MR2. 

For the 2-Gbit Hynix part, rewriting MR3 removed the SEFI condition in some cases, but not 
in others. It did not have any effect for any other part. 

DLL reset rarely had an effect on a SEFI. Furthermore, since a DLL reset always includes 
rewriting MR0, it is hard to tell whether a change was caused by the DLL reset or the mode 
register rewrite, unless MR0 was unsuccessfully rewritten before. 

For all parts, resetting the DUT removed the SEFI in about half of the cases where it was 
attempted. 

Since a PHY reset always includes a device reset, it was only attempted after a device reset 
had failed. It removed the SEFI in most, but not all cases. 

In all cases where a power cycle was performed, it removed all SEFIs. 
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4.2.2 Required measure 

In order to obtain a result that is relevant for a practical application, we determined the effec-
tiveness of the three groups of measures, as defined in section 4.2. Since the timing impact of 
the individual measures is low, and the data impact of all measures of a given group is identi-
cal, it is reasonable to assume that all measures of a group can always be performed together. 
The interesting result is then the effectiveness of the individual groups, e. g. what percentage 
of SEFIs can be removed with guaranteed data retention (group A). 

Given a group of SEFI mitigation tests (e. g. for a given part at a given LET), we can, for each 
group g (with g in [A, B, C]), count the number of times that a measure from this group has 
been performed, ng, as well as the number of times that any measure from this group was ef-
fective, eg. The effectiveness of this group (or the probability of success) is then given by pg = 
ng / eg. Note in particular that pC = 1. 

The value we’re interested in is the required group. This is the “first” group (the one with the 
lowest data impact) that is sufficient to remove a SEFI. This is motivated by the fact that each 
group includes all measures from the previous group and the data impact is monotonically 
increasing from group to group. 

The percentage of cases where a group g is the required group, rG is given by the effectiveness 
of this group, multiplied by the percentage of cases where all previous groups where ineffec-
tive: 

 rA  =  pA   =  pA 

 rB  =  pB · (1 – pA)  =  pB · (1 – rA) 

 rC  =  pC · (1 – pA) · (1 – pB) =  pC · (1 – rA – rB) 

With pC = 1, we find that rA + rB + rC = 1, meaning that any SEFI can be removed by one of 
the measures (but note that these measures may incur data loss). 

Note that in some cases, no errors of a given error class were observed in any run, or a meas-
ure in a given group g was never attempted for this error class (ng = eg = 0). In this case, the 
effectiveness of the group (given by pg = ng / eg) is undefined. Furthermore, the percentage of 
this group being the required group (rg) is also undefined, as are all such values for subse-
quent groups. 

This section shows the percentage of required measures for mitigation of a given SEFI class. 
Note that for some DUTs, we did not encounter any usable row or column SEFIs, or for the 
few SEFIs we did encounter, we did not attempt any of the measures from group A. Due to 
the reasons outlined in the preceding paragraph, no data is shown in this case. 
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ter value was change by radiation, or because the mode register write triggered some internal 
process which caused the SEFI to disappear. 

Since irradiation is very time consuming, and the number of possible combinations of 
measures is very high, the number of runs is not sufficient to gain authoritative numbers, or to 
derive cross sections for the effectiveness of measures. It is possible that, for a given device, a 
given measure has only been attempted once. The results presented in this section can there-
fore only give a first orientation. 

Group A measures, which preserve data, are ineffective in many cases. Group B measures are 
effective in most cases, but endanger the data. Group C (power cycle) is always effective, but 
it does not preserve the data. Since group A and group B measures are not always effective, an 
application may have to perform a power cycle, and must therefore be prepared for data loss. 

4.3 Hard SEUs 
Hard SEUs (also called stuck bits) are SEUs that cannot be removed by writing the device. In 
other words, hard SEUs are SEUs that are present even if the device has not been irradiated 
between writing and reading. 

For each run, pre-existing hard SEUs will also be included in the (total) SEU count deter-
mined after irradiation. In order to exclude these hard SEUs from the number of errors created 
during a run, the number of hard SEUs has been determined before each run by writing and 
immediately reading the device without intermediate irradiation. 

In order to determine the number of hard SEUs created in a test run, we subtract the number 
of hard SEUs before the run from the number of hard SEUs after the run. The number of hard 
SEUs was not determined immediately after the run; instead, the number of hard SEUs before 
the next test run with the same DUT was used (note that this neglects the annealing of hard 
SEUs that occurs between a test run and the next one). 

The cross sections of hard SEUs, determined in the 1/2012 test, are shown in figure 29. The 
cross sections for all SEUs (hard and soft) are shown as open symbols for comparison. Figure 
30 shows the ratio of hard SEUs to total SEUs.  

The ratio of hard SEUs to total SEUs is approximately constant over the whole LET range. It 
is slightly higher for the Samsung part than for the Elpida part. The threshold LET of hard 
SEUs is about the same as that of all SEUs for both parts. 
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6 Appendix A: Full cross section charts 
The following charts show the cross section versus LET. The cross sections are determined by 
dividing the number of errors by the fluence. If multiple runs were performed with the same 
parameters, they are combined by dividing the total number of errors from all runs by the total 
fluence from all runs. Open symbols represent cases where no errors of the respective class 
were observed. In this case, the value is determined by dividing 1 by the fluence. The result 
represents an upper limit for the cross section. 

The error bars indicate the usual 5% Poisson error bounds. In cases where no errors were ob-
served, the error bars extend to zero in the negative direction, which corresponds to negative 
infinity in the logarithmic plot. 

Each measurement is characterized by six attributes: 

 The part number (7 parts; see table 1) 

 The LET (6 ions; see table 3) 

 The test mode (read, write/read, or storage; see section 3.4) 

 Whether software conditioning was used (see section 3.4) 

 The error class (SEU, row SEFI, column SEFI, or device SEFI; see section 3.6) 

 The test campaign (1/2012 or 4/2012) 

Together, these attributes form a six-dimensional parameter space containing more than 2000 
points. Such an amount of data is hard to visualize in its entirety. The following subsections 
therefore show different views of the configuration space, focusing on different aspects of the 
results. 

Note that in each subsection, the cross section axis is scaled identically for all charts describ-
ing the same error class. This allows easy visual comparison between the results for different 
test modes and test campaigns as well as the effect of software conditioning. 

Because all measurements with the same ion are taken at the same LET, all such measure-
ments (up to 7) would be displayed at the exact same horizontal position in the charts, making 
it virtually impossible to distinguish the measurements for different parts from each other. The 
LET values shown in the charts are therefore slightly changed in order not to place points at 
the same position. This does not represent an actual change in LET. 

The SEU cross section charts also show the approximate die area per bit. This value was ob-
tained by measuring the total die area and dividing it by the number of bits in the device, not 
taking into account the amount of the die area used for the periphery (control logic, sense am-
plifiers, I/O etc.) The measured values for the die area per bit are shown in table 2. Note that 
the value is not identical for the different parts. The value shown in the chart is 4·10-10, which 
is close to the largest value for all DUTs. 

6.1 Test mode comparison 
The charts in this section show the cross sections for all test modes, for a given error class, 
part, software conditioning and test campaign. Note that no tests with software conditioning 
were performed in the 4/2012 campaign. 

This representation shows the influence of the test mode on the cross section. 
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Generally, the results for read mode and write/read mode are very similar to those for storage 
mode. This is plausible because dynamic memories perform a periodic refresh operation (eve-
ry 7.8 µs in the case of DDR3), which opens and precharges banks, similar to what happens 
during a write or read operation. Notable exceptions are: 

 For the 4-Gbit and 2-Gbit (revision D) Samsung parts, the SEU cross sections are sig-
nificantly higher in write/read mode than in the other modes (sections 6.1.2 and 6.1.4) 

 For the 2-Gbit Micron part, the device SEFI cross sections are slightly lower in storage 
mode than in the other modes, but mostly within the error bars (section 6.1.27) 
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