

Technische Universität Braunschweig

TN-IDA-RAD-12/12

K. Grürmann, M. Herrmann, F. Gliem

Heavy Ion SEE Test

of

16-Gbit/32-Gbit Micron

SLC NAND-Flash Memory Devices

RADEF Jyväskylä, Jan. 9 – 13, 2012

RADEF Jyväskylä, April 16 – 20, 2012

Test Report

Contract number: ESTEC Contract No. 4000101358/10/NL/AF Contract title: Radiation hard memory, Radiation testing of candidate memory devices for Laplace mission Technical officer: V. Ferlet-Cavrois Date of first writing: May, 29, 2013 Date of final issue: January, 8, 2015

Contents

1	Int	rodu	ction 3
2	Те	est Fa	acility4
3	DL	JT T	ype and Organization6
4	DL	JT Pi	reparation
5	Те	est pr	ocedure11
	5.1	Te	st mode and error classification11
6	Те	est Re	esults13
	6.1	SE	U cross section for normal ion incidence13
	6.2	SE	FI cross section17
	6.2	2.1	Read Mode M2R17
	6.2	2.2	Marching Mode with Power Cycle M523
	6.2	2.3	Marching Mode without Power Cycle M126
	6.3	De	structive Failures
	6.4	So	ft SEU Annealing32
	6.5	На	rd SEU Annealing
	6.6	Dis	cussion
7	Rı	ın Ta	ble January Test
8	Ru	ın Ta	ble April Test
9	Pa	ackag	ge pictures75
10)	Refe	rences77

1 Introduction

Overall goal is the SEE heavy ion response of 25 nm Micron 16-Gbit and 32-Gbit Single Level Cell (SLC) NAND-Flash memory devices. In this context, two radiation test campaigns were performed by IDA under contract with Astrium, Astrium being under contract with ESTEC:

- 1. Heavy ion test at the Radiation Effects Facility (RADEF) of the University of Jyväskylä, Jyväskylä, Finland, January 9 13, 2012
- 2. Heavy ion test at the Radiation Effects Facility (RADEF) of the University of Jyväskylä, Jyväskylä, Finland, April 16 20, 2012

Both test campaigns were combined tests of NAND-Flash and DDR3 SDRAM devices. In this test report, only the NAND-Flash test results are presented.

The focus of the first test campaign was to determine SEU and SEFI cross sections and to address the annealing behaviour.

The focus of the second test campaign was to study Destructive Failures (DF) and annealing of hard and soft SEUs.

2 Test Facility

Beam time at the RADEF facility of the University of Jyväskylä, Finland, was provided by ESTEC to perform these Heavy Ion tests. The RADEF facility is described in [1].

The ion cocktail shown in Tab. 1 was used with the exception of Silicon. The MEAS and SRIM simulated LET values differ somewhat in detail. For the test data evaluation, the SRIM simulated LET values are used.

Ion	Energy	LET, Surface, MEAS	LET, Surface, SRIM	Range
	[MeV]	[MeV cm ² mg ⁻¹]	[MeV cm ² mg ⁻¹]	[µm]
$^{15}N^{4+}$	139	1.87	1.83	202
²⁰ Ne ⁶⁺	186	3.68	3.63	146
³⁰ Si ⁸⁺	278	6.74	6.40	130
$^{40}Ar^{12+}$	372	10.08	10.2	118
⁵⁶ Fe ¹⁵⁺	523	18.84	18.5	97
⁸² Kr ²²⁺	768	30.44	32.2	94
¹³¹ Xe ³⁵⁺	1217	54.95	60.0	89

Tab. 1: RADEF 9.3 MeV/amu Ion Cocktail

Fig. 1: RADEF 9.3 MeV/amu ion cocktail, LET versus range [2]

Fig. 1 shows the LET versus range for DUTs in vacuum.

Most of the tests were performed with the DUT in air. The ions penetrate a kapton foil of about 25 μ m thickness at the end of the beam tube and additionally an air gap of about 1 cm. In comparison to irradiation in vacuum, the ion range in Si/SiO₂ is shortened, and the LET value in the active layer below the surface is shifted toward the Bragg peak and thereby it is increased.

3 DUT Type and Organization

The tested DUTs [3] [4] are described in Tab. 2. Tab. 3 presents the DUTs used for comparison. All parts are single die packages (SDP), except the Samsung 4x8-Gbit part which is a quad die package (QDP).

Manu- facturer	Capacity [Gbit]	Package	Part Number	Date Code	Lot Code	Sam- ples	IDA ID
Micron	16	SDP	MT29F16G08ABACAWP-IT:C	1122	unknown	7	M305- M311
				1146	unknown	34	M312- M345
Micron	32	SDP	MT29F32G08ABAAAWP-IT:A	1130	unknown	14	M403- M416

Tab. 2: Tested DUTs

Manu- facturer	Capacity [Gbit]	Package	Part Number	Date Code	Lot Code
Micron	8	SDP	MT29F8G08AAAWP-A	0842	unknown
Sam- sung	8	SDP	K9F8G08U0M	0725	FFE006XX IDA Lot E
Sam- sung	4x8	QDP	K9WBG08U1M-PIB0	0816	FFC042X1, IDA Lot D
Sam- sung	4x8	QDP	K9WBG08U1M-PIB0	0837	FMH030X2 IDA Lot F
Sam- sung	4x8	QDP	K9WBG08U1M-PIB0	0925	FME071P2, IDA Lot G

Tab. 3: DUTs for comparison

Die capacity	Number of blocks	Number of pages per block	Number of bytes per page+spare area
8-Gbit	4096	64, (64)	4096+128, (4224)
16-Gbit	4096	128, (64)	4096+224, (4224)
32-Gbit	4096	128, (64)	8192+448, (4224)

Tab. 4: Organization of SLC NAND-Flash devices. The tested subset is given in parentheses.

In the existing NAND-Flash test bed the write operation is hardware controlled by the head station and covers the full address space.

In contrast, the read and compare operation is software controlled by the GSEOS S/W of the remote control PC.

This software could not be adapted in time to the changed count of pages and bytes of the 16-Gbit and 32-Gbit NAND-Flash devices.

Therefore, the read operation always covers only 64 pages per block and always only 4k bytes per page, such as shown by the figures in parentheses in Tab. 4.

Erase and write operations are performed over all pages and all bytes of the accessed blocks.

4 DUT Preparation

First, all DUTs were marked with an individual ID and were checked for factory marked bad blocks. The ID and the bad block table were programmed into block 0, which is guaranteed to be valid by the manufacturer for every DUT. These bad blocks were not accessed by erase or program operations any more.

All tested Micron 25 nm SLC NAND-Flash devices showed factory marked bad blocks at the block addresses 90 and 91. Only a few devices showed additional bad blocks which are listed in Tab. 5. These four devices were not used during these SEE test campaigns.

IDA ID	bad block 1	bad block 2	bad block 3	bad block 4
M360	90	91	3794	
M361	90	91	1550	
M362	90	91	2562	
M363	90	91	3613	3615

Tab. 5: DUTs with more than two factory marked bad blocks

The 48-pin TSOP1 packages were opened for direct access of the ion beam to the surface of the die. The opening is done by drop etching with fuming nitric acid. The device is placed on a mounting plate and is covered with Teflon tape. A window is cut into this tape. Then the device is heated to about 70°C, and an acid drop is given into the window. Thereafter the device is rinsed with water and then with acetone. This process of etching and rinsing is repeated many times until the die surface is free of plastic cover. After the opening procedure the functionality check is repeated.

The opening yield of both Micron devices is extremely low. For the 16-Gbit DUTs a yield of 40% of fully opened dies was achieved. This is in line with the older 50 nm 8-Gbit Micron devices. In contrast to the old 51 nm 8-Gbit Samsung devices, there is only a small time window to get a fully opened die surface and a functional device. For the 32-Gbit devices a yield of 0% of fully opened dies was achieved because in contrast to the previous 51 nm Samsung and 50 nm Micron NAND-Flash generations, the new 25 nm NAND-Flash from Micron is packaged differently (Fig. 2 and Fig. 3 compared to Fig. 4 and Fig. 5). The complete opening of the 32-Gbit Micron DUTs is extremely delicate because there is nearly no space between the die edges and the package rim on three of the four sides (Fig. 3). Because of the insufficient yield the Destructive Failure investigations were gained from the 16-Gbit Micron device.

Fig. 2: Opened package of the Micron 25 nm 16-Gbit NAND-Flash

Fig. 3: Opened package of the Micron 25 nm 32-Gbit NAND-Flash

Fig. 4: Opened package of the Samsung 51 nm 4x8-Gbit NAND-Flash with bond wires on the small sides of the TSOP1 package

Fig. 5: Opened package of the Micron 50 nm 8-Gbit NAND-Flash with bond wires on the small sides of the TSOP1 package

5 Test procedure

5.1 Test mode and error classification

Due to the complex device structure, comprising state machines, large address, status, command and data registers, a high voltage pulser, etc. a large number of different error conditions can occur. These error conditions are classified into four main classes and several subclasses according to Fig. 6.

Static errors appear again at repeated read in contrast to dynamic errors. The transient dynamic errors are differentiated further into those which are distributed randomly over the address space and those which are clustered.

Static errors originate from the array and dynamic errors from the peripheral data path. Both kinds of spurious data errors can be handled easily with a conventional error correction scheme (Hamming, Reed-Solomon).

More challenging for the error correction are SEFIs. SEFIs are caused by hits in the control circuitry as in the state machine or in the S/P Register. Transient SEFIs disappear without the need of a device reset, unlike persistent SEFIs.

In particular the transient SEFIs are differentiated further into (i) row errors corrupting more than 100 bytes per page, (ii) block errors corrupting a series of 3...64 device pages up to the end of the respective device block and (iii) column errors corrupting the same byte position of subsequent device pages. Again, the column errors are split into those restricted or not restricted to one block.

Fig. 6: Error classification scheme

For the purpose of later detailed error analysis and classification, all test vectors are stored. A quick look of the error distribution over the complete address space is displayed in real time. Fig. 7 shows an example quick look error image. Horizontal lines represent page errors, vertical lines column errors and the horizontal bar a series of block errors, which were stopped by manual power cycling.

Fig. 7: Example quick look error image

6 Test Results

6.1 SEU cross section for normal ion incidence

Tab. 6 and Fig. 8 show the static random SEU cross section of the Micron 16-Gbit and 32-Gbit device with 25 nm feature size. For comparison in Fig. 8, the values for the Micron 50 nm 8-Gbit device are shown also.

Stuck bits from previous runs are subtracted from the error count.

IDA	

Run	Run	Run	lon	LET			Device			Mode	Fluence	Time	Average	Dose		Cla	ass A Erro	ors
IDA	RADEF	TAMU		[MeV cm ² mg ⁻¹]	Marking	Tested Blocks	Туре	Date Code	Lot Code		F [cm ⁻²]	[s]	Flux [cm ⁻² s ⁻¹]	[rad]	Stuck bits	Stuck bit source	SEU	σSEU [cm ² bit ⁻¹]
3 9 Σ	251 157		N N	1.8 1.8	M305 M306	64 64 64	MT29F16G08ABACAWP-IT:C MT29F16G08ABACAWP-IT:C	1122 1122	BYV7W87.21 BYV7W87.21	M3a M3a	1.00E+07 1.01E+07 2.01E+07	226 252	4.42E+04 4.01E+04	288 291			2938 4665 7603	4.25E-12 6.67E-12 5.47E-12
13 17 Σ	261 165		N N	1.8 1.8	M412 M413	64 64 64	MT29F32G08ABAAAWP-IT:A MT29F32G08ABAAAWP-IT:A	1130 1130	BYZT5C7.21 BYZT5C7.21	M3a M3a	1.00E+07 1.01E+07 2.01E+07	259 273	3.86E+04 3.70E+04	288 291			3439 3498 6937	4.97E-12 5.00E-12 4.99E-12
96.a 100.a Σ	408 412		Ne Ne	3.6 3.6	M310 M311	64 64 64	MT29F16G08ABACAWP-IT:C MT29F16G08ABACAWP-IT:C	1122 1122	BYV7W87.21 BYV7W87.21	M3a M3a	5.05E+06 5.06E+06 1.01E+07	174 190	2.90E+04 2.66E+04	1132 999	71 7	Ar Ar	4731 5036 9767	1.35E-11 1.44E-11 1.40E-11
88.a 92.a Σ	400 404		Ne Ne	3.6 3.6	M415 M414	64 64 64	MT29F32G08ABAAAWP-IT:A MT29F32G08ABAAAWP-IT:A	1130 1130	BYZT5C7.21 BYZT5C7.21	M3a M3a	5.02E+06 5.02E+06 1.00E+07	175 179	2.87E+04 2.80E+04	809 3340	332 51	Ar Ar	4748 4705 9453	1.37E-11 1.35E-11 1.36E-11
68.a 72.a 77.a Σ	379 383 388		Ar Ar Ar	10.1 10.1 10.1	M310 M311 M308	64 64 64 64	MT29F16G08ABACAWP-IT:C MT29F16G08ABACAWP-IT:C MT29F16G08ABACAWP-IT:C	1122 1122 1122	BYV7W87.21 BYV7W87.21 BYV7W87.21	M3a M3a M3a	1.01E+06 1.01E+06 1.01E+06 3.03E+06	169 168 151	5.98E+03 6.01E+03 6.69E+03	356 163 163	286	Xe	2815 3026 2809 8650	4.03E-11 4.33E-11 4.02E-11 4.13E-11
78.a 84.a Σ	389 395		Ar Ar	10.1 10.1	M414 M415	64 64 64	MT29F32G08ABAAAWP-IT:A MT29F32G08ABAAAWP-IT:A	1130 1130	BYZT5C7.21 BYZT5C7.21	M3a M3a	1.01E+06 1.01E+06 2.02E+06	160 143	6.31E+03 7.06E+03	2388 2313	463 1051	Xe Xe	2730 2715 5445	3.91E-11 3.88E-11 3.89E-11
33.a 37.a Σ	280 284		Fe Fe	18.5 18.5	M305 M306	64 64 64	MT29F16G08ABACAWP-IT:C MT29F16G08ABACAWP-IT:C	1122 1122	BYV7W87.21 BYV7W87.21	M3a M3a	1.01E+06 1.01E+06 2.02E+06	171 133	5.91E+03 7.59E+03	1467 1460			5753 6210 11963	8.23E-11 8.88E-11 8.56E-11
22.a 23.a 28.a Σ	270 271 276		Fe Fe Fe	18.5 18.5 18.5	M413 M414 M415	64 64 64 64	MT29F32G08ABAAAWP-IT:A MT29F32G08ABAAAWP-IT:A MT29F32G08ABAAAWP-IT:A	1130 1130 1131	BYZT5C7.21 BYZT5C7.21 BYZT5C7.21	M3a M3a M3a	1.01E+07 1.00E+06 1.00E+06 1.21E+07	191 206 157	5.29E+04 4.85E+03 6.37E+03	7110 296 296	170		60038 5570 6317 71925	8.59E-11 8.05E-11 9.13E-11 8.59E-11
41.a 45.a 57.a Σ	288 292 304		Kr Kr Kr	32.1 32.1 32.1	M306 M305 M307	64 64 64 64	MT29F16G08ABACAWP-IT:C MT29F16G08ABACAWP-IT:C MT29F16G08ABACAWP-IT:C	1122 1122 1123	BYV7W87.21 BYV7W87.21 BYV7W87.21	M3a M3a M3a	5.01E+05 5.03E+05 5.05E+05 1.51E+06	185 176 192	2.71E+03 2.86E+03 2.63E+03	2495 2354	364 227	Fe Fe	5641 5220 5363 16224	1.63E-10 1.50E-10 1.53E-10 1.55E-10
139 167 Σ		266 293	Kr Kr	21.8 21.8	M356 M357	32 32 32	MT29F16G08ABACAWP-IT:C MT29F16G08ABACAWP-IT:C	1146 1146	BYP5ZT9.21 BYP5ZT9.21	M3a M3a	1.02E+06 1.01E+05 1.12E+06	19 27	5.37E+04 3.74E+03				3011 281 3292	8.53E-11 8.04E-11 8.49E-11
53.a Σ	300		Kr	32.1	M415	64 64	MT29F32G08ABAAAWP-IT:A	1130	BYZT5C7.21	МЗа	5.05E+05 5.05E+05	202	2.50E+03	1181	222	Fe	5353 5353	1.53E-10 1.53E-10
58.a 60.a 62.a Σ	305 307 309		Xe Xe Xe	60 60 60	M305 M306 M310	64 64 64 64	MT29F16G08ABACAWP-IT:C MT29F16G08ABACAWP-IT:C MT29F16G08ABACAWP-IT:C	1122 1122 1123	BYV7W87.21 BYV7W87.21 BYV7W87.22	M3a M3a M3a	2.01E+05 1.01E+05 1.01E+05 4.03E+05	204 219 246	9.85E+02 4.61E+02 4.11E+02	3154 3148 97	965 1215	Kr Fe	3821 2216 1939 7976	2.75E-10 3.17E-10 2.77E-10 2.86E-10
64.a 66.a Σ	311 313		Xe Xe	60 60	M414 M415	64 64 64	MT29F32G08ABAAAWP-IT:A MT29F32G08ABAAAWP-IT:A	1130 1130	BYZT5C7.21 BYZT5C7.21	M3a M3a	1.00E+05 1.01E+05 2.01E+05	240 240	4.17E+02 4.21E+02	2129 2054	467 1141	Kr Kr	1877 1948 3825	2.71E-10 2.79E-10 2.75E-10

Tab. 6: Storage Mode M3 Test Data

Fig. 8: Static random SEU cross section of 8-Gbit, 16-Gbit and 32-Gbit SLC NAND-Flash devices

These static random SEU results differ at low LET from the results presented by F. Irom, JPL [5], Fig. 9. The devices tested by F. Irom are of the same part number (MT29F32G08ABAAA), but of a different date code (1106).

Fig. 9: SEU cross section for Micron 32-Gb SLC NAND flash memory. Measurements were performed at RADEF. SEU cross section for Micron Technology 8-Gb SLC is shown for comparison. [5, Fig. 1]

Fig. 10 compares the SEU cross sections gained by JPL and IDA. For unknown reasons, the cross section differs by nearly two orders of magnitude at low LET. The SLC cross section measured by IDA is nearly congruent with the MLC cross section measured by JPL.

Fig. 10: Comparison of SEU cross sections for Micron 32-Gbit SLC and MLC parts tested by JPL[5] and IDA

The static SEU cross sections of the 16-Gbit and the 32-Gbit NAND-Flash derived by IDA are nearly identical (Fig. 8). At low LET, they exceed the SEU cross-section of the Micron 8-Gbit NAND-Flash by several orders of magnitude. In particular, the IDA cross section curve results in a threshold LET substantially lower than the lowest LET of the available RADEF ion cocktail (nitrogen, 1.8 MeV cm²/mg). At high LET, the difference between cross sections is reduced to less than one order of magnitude. The area of the 16-Gbit chip is 0.9 cm², i.e., 5.24×10^{-11} cm²/bit = $(72 \text{ nm})^2$ /bit. The measured random SEU cross section exceeds this value, even at LET = 10 MeV cm²/mg. This indicates that single hits induce multiple random SEUs. The inspection of the error records revealed that, in most cases, the same bit in the same byte of adjacent rows is corrupted. Multi-bit errors in the same byte are rare. Fig. 11 shows the increase of the share of those adjacent row SEUs with LET.

Stuck bits are noted in increasing number at higher LET – about 20% of the random SEUs at xenon.

Fig. 11: Share of adjacent row SEUs

6.2 SEFI cross section

The SEFI cross sections have been measured individually for each mode. As the following section shows the influence of the respective mode is rather minor. Mode 5 delivers nearly the same cross section than Mode 1 in contrast to early NAND-Flash generations.

6.2.1 Read Mode M2R

Both, Transient (Class B) SEFIs and Persistent (Class C) SEFIs occurred in Read Mode.

The respective test data are shown in Tab. 7.

The SEFIs are classified into Column Errors, Row Errors and Block Errors.

Fig. 12, Fig. 13 and Fig. 14 show the Class B column error (CE), Class B row error (RE) and Class B block error (BE) cross section versus LET, Fig. 15 the combined Class B cross section of all three SEFI types.

Fig. 16, Fig. 17 and Fig. 18 show the Class C CE, Class C RE and Class C BE cross section versus LET, Fig. 19 the combined Class C cross section of all three SEFI types.

Fig. 20 shows the combined Class B+C cross section of all three SEFI types.

All row errors are transient (Fig. 13, Fig. 17) and all column errors are persistent (Fig. 12, Fig. 16).

As Fig. 16 shows one out of 2000 xenon ions generates a Class C Persistent SEFI.

Ru	n Run	lon	LET			Device			Mode	Fluence	Time	Average	Dose	Class B Errors						Class C Errors								
ID.	A RADEF		[MeV cm ² mg ⁻¹]	Marking	Tested Blocks	Туре	Date Code	Lot Code		F [cm ⁻²]	[s]	Flux [cm ⁻² s ⁻¹]	[rad]	CE	RE	BE	σ _{ce} [cm²die ⁻¹]	σ _{RE} [cm ² die ⁻¹]	σ _{BE} [cm²die ⁻¹]	σ _{ClassB} [cm ² die ⁻¹]	CE	RE	BE	σ _{ce} [cm²die ⁻¹]	σ _{RE} [cm²die ⁻¹]	σ _{BE} [cm²die ¹]	σ _{ClassC} [cm ² die ⁻¹]	σ _{ClassB+C} [cm ² die ⁻¹]
5 12 Σ	253 2260	N N	1.8 1.8	M305 M306	777 770 773.5	MT29F16G08ABACAWP-IT:C MT29F16G08ABACAWP-IT:C	1122 1122	BYV7W87.21 BYV7W87.21	M2R M2R	1.01E+07 1.01E+07 2.02E+07	231 231	4.37E+04 4.37E+04	589 1161	0	0	0	< 9.90E-08 < 9.90E-08 < 4.95E-08	< 9.90E-08 < 9.90E-08 < 4.95E-08	< 9.90E-08 < 9.90E-08 < 4.95E-08	< 9.90E-08 < 9.90E-08 < 4.95E-08	0	0	0	< 9.90E-08 < 9.90E-08 < 4.95E-08	< 9.90E-08 < 9.90E-08 < 4.95E-08			
10 20 Σ	6 264 0 268	N N	1.8 1.8	M412 M413	905 601 753	MT29F32G08ABAAAWP-IT:A MT29F32G08ABAAAWP-IT:A	1130 1130	BYZT5C7.21 BYZT5C7.21	M2R M2R	1.00E+07 1.01E+07 2.01E+07	275 175	3.64E+04 5.77E+04	1155 1161	0	0	0	< 1.00E-07 < 9.90E-08 < 4.98E-08	< 1.00E-07 < 9.90E-08 < 4.98E-08	< 1.00E-07 < 9.90E-08 < 4.98E-08	< 1.00E-07 < 9.90E-08 < 4.98E-08	0	0	0	< 1.00E-07 < 9.90E-08 < 4.98E-08	< 1.00E-07 < 9.90E-08 < 4.98E-08	< 1.00E-07 < 9.90E-08 < 4.98E-08	< 1.00E-07 < 9.90E-08 < 4.98E-08	< 1.00E-07 < 9.90E-08 < 4.98E-08
99 10 Σ	9 411 13 415	Ne	3.6 3.6	M310 M311	629 645 637	MT29F16G08ABACAWP-IT:C MT29F16G08ABACAWP-IT:C	1122	BYV7W87.21 BYV7W87.21	M2R M2R	5.04E+06 5.02E+06 1.01E+07	186	2.71E+04 2.67E+04	2003 1867	0	0	0	< 1.98E-07 < 1.99E-07 < 9.94E-08	< 1.98E-07 < 1.99E-07 < 9.94E-08	< 1.98E-07 < 1.99E-07 < 9.94E-08	< 1.98E-07 < 1.99E-07 < 9.94E-08	o	0	2 3 5	< 1.98E-07 < 1.99E-07 < 9.94E-08	< 1.98E-07 < 1.99E-07 < 9.94E-08	3.97E-07 5.98E-07 4.97E-07	3.97E-07 5.98E-07 4.97E-07	3.97E-07 5.98E-07 4.97E-07
9' 9! Σ	1 403 5 407	Ne Ne	3.6 3.6	M415 M414	605 606 605.5	MT29F32G08ABAAAWP-IT:A MT29F32G08ABAAAWP-IT:A	1130 1130	BYZT5C7.21 BYZT5C7.21	M2R M2R	5.04E+06 5.06E+06 1.01E+07	176 177	2.86E+04 2.86E+04	454 4211	0	0	0	< 1.98E-07 < 1.98E-07 < 9.90E-08	< 1.98E-07 < 1.98E-07 < 9.90E-08	< 1.98E-07 < 1.98E-07 < 9.90E-08	< 1.98E-07 < 1.98E-07 < 9.90E-08	0	0	3 2 5	< 1.98E-07 < 1.98E-07 < 9.90E-08	< 1.98E-07 < 1.98E-07 < 9.90E-08	5.95E-07 3.95E-07 4.95E-07	5.95E-07 3.95E-07 4.95E-07	5.95E-07 3.95E-07 4.95E-07
7' 70 Σ	1 382 6 387	Ar Ar	10.1 10.1	M310 M311	556 547 551.5	MT29F16G08ABACAWP-IT:C MT29F16G08ABACAWP-IT:C	1122 1122	BYV7W87.21 BYV7W87.21	M2R M2R	1.00E+06 1.01E+06 2.01E+06	170 157	5.88E+03 6.43E+03	841 708	0	1 2 3	1 2 3	< 1.00E-06 < 9.90E-07 < 4.98E-07	1.00E-06 1.98E-06 1.49E-06	1.00E-06 1.98E-06 1.49E-06	2.00E-06 3.96E-06 2.99E-06	37 33 70	0	3 2 5	3.70E-05 3.27E-05 3.48E-05	< 1.00E-06 < 9.90E-07 < 4.98E-07	3.00E-06 1.98E-06 2.49E-06	4.00E-05 3.47E-05 3.73E-05	4.20E-05 3.86E-05 4.03E-05
83 81 81	3 194 7 398	Ar Ar	10.1 10.1	M414 M415	606 492 549	MT29F32G08ABAAAWP-IT:A MT29F32G08ABAAAWP-IT:A	1130 1130	BYZT5C7.21 BYZT5C7.21	M2R M2R	1.01E+06 1.00E+06 2.01E+06	177 140	5.71E+03 7.14E+03	3051 355	0	5 2 7	1 1	< 9.90E-07 < 1.00E-06 < 4.98E-07	4.95E-06 2.00E-06 3.48E-06	< 9.90E-07 1.00E-06 4.98E-07	4.95E-06 3.00E-06 3.98E-06	25 36 61	0	1 1 2	2.48E-05 3.60E-05 3.03E-05	< 9.90E-07 < 1.00E-06 < 4.98E-07	9.90E-07 1.00E-06 9.95E-07	2.57E-05 3.70E-05 3.13E-05	3.07E-05 4.00E-05 3.53E-05
30 40 Σ	6 283 0 287	Fe Fe	18.5 18.5	M305 M306	505 577 541	MT29F16G08ABACAWP-IT:C MT29F16G08ABACAWP-IT:C	1122 1122	BYV7W87.21 BYV7W87.21	M2R M2R	1.02E+06 1.00E+06 2.02E+06	132 165	7.73E+03 6.06E+03	2095 2237	0	4 14 18	1 1	< 9.80E-07 < 1.00E-06 < 4.95E-07	3.92E-06 1.40E-05 8.91E-06	9.80E-07 < 1.00E-06 4.95E-07	4.90E-06 1.40E-05 9.41E-06	80 80 160	0	2 2	7.84E-05 8.00E-05 7.92E-05	< 9.80E-07 < 1.00E-06 < 4.95E-07	1.96E-06 < 1.00E-06 9.90E-07	8.04E-05 8.00E-05 8.02E-05	8.53E-05 9.40E-05 8.96E-05
23 32 Σ	7 275 2 279	Fe Fe	18.5 18.5	M414 M415	489 606 547.5	MT29F32G08ABAAAWP-IT:A MT29F32G08ABAAAWP-IT:A	1130 1130	BYZT5C7.21 BYZT5C7.21	M2R M2R	1.01E+06 1.01E+06 2.02E+06	121 177	8.35E+03 5.71E+03	1170 922	0	2 12 14	1 2 3	< 9.90E-07 < 9.90E-07 < 4.95E-07	1.98E-06 1.19E-05 6.93E-06	9.90E-07 1.98E-06 1.49E-06	2.97E-06 1.39E-05 8.42E-06	56 60 116	0	2 2 4	5.54E-05 5.94E-05 5.74E-05	< 9.90E-07 < 9.90E-07 < 4.95E-07	1.98E-06 1.98E-06 1.98E-06	5.74E-05 6.14E-05 5.94E-0 5	6.04E-05 7.52E-05 6.78E-05
44 48 Σ	4 291 3 295	Kr Kr	32.1 32.1	M306 M305	661 633 647	MT29F16G08ABACAWP-IT:C MT29F16G08ABACAWP-IT:C	1122 1122	BYV7W87.21 BYV7W87.21	M2R M2R	5.03E+05 5.03E+05 1.01E+06	194 186	2.59E+03 2.70E+03	3051 2961	0	5 2 7	0	< 1.99E-06 < 1.99E-06 < 9.94E-07	9.94E-06 3.98E-06 6.96E-06	< 1.99E-06 < 1.99E-06 < 9.94E-07	9.94E-06 3.98E-06 6.96E-06	101 73 174	0	2 2	2.01E-04 1.45E-04 1.73E-04	< 1.99E-06 < 1.99E-06 < 9.94E-07	< 1.99E-06 3.98E-06 1.99E-06	2.01E-04 1.49E-04 1.75E-04	2.11E-04 1.53E-04 1.82E-04
52 56 Σ	2 299 6 303	Kr Kr	32.1 32.1	M414 M415	715 708 711.5	MT29F32G08ABAAAWP-IT:A MT29F32G08ABAAAWP-IT:A	1130 1130	BYZT5C7.21 BYZT5C7.21	M2R M2R	5.02E+05 5.05E+05 1.01E+06	212 209	2.37E+03 2.42E+03	2033 1957	0	9 7 16	1 1	< 1.99E-06 < 1.98E-06 < 9.93E-07	1.79E-05 1.39E-05 1.59E-05	< 1.99E-06 1.98E-06 9.93E-07	1.79E-05 1.58E-05 1.69E-05	96 83 179	0	4 4	1.91E-04 1.64E-04 1.78E-04	< 1.99E-06 < 1.98E-06 < 9.93E-07	< 1.99E-06 7.92E-06 3.97E-06	1.91E-04 1.72E-04 1.82E-04	2.09E-04 1.88E-04 1.99E-04
6	3 310	Xe	60	M310	818	MT29F16G08ABACAWP-IT:C	1122	BYV7W87.21	M2R	1.00E+05	244	4.10E+02	193		1	2	< 1.00E-05	1.00E-05	< 1.00E-05	1.00E-05	46		2	4.60E-04	< 1.00E-05	2.00E-05	4.80E-04	4.90E-04
6 6 Σ	7 314	Xe	60	M415	830 830	M129F32G08ABAAAWP-IT:A MT29F32G08ABAAAWP-IT:A	1130	BYZT5C7.21 BYZT5C7.21	M2R	1.00E+05 1.00E+05 2.00E+05	260 249	4.02E+02	2225	0	' 1	2 2	< 1.00E-05 < 1.00E-05 < 5.00E-06	< 1.00E-05 < 1.00E-05 5.00E-06	< 1.00E-05 1.00E-05	< 1.00E-05 < 1.00E-05 1.50E-05	29 33 62	0	' 1	2.90E-04 3.30E-04 3.10E-04	< 1.00E-05 < 1.00E-05 < 5.00E-06	< 1.00E-05 < 1.00E-05 5.00E-06	3.30E-04 3.30E-04 3.15E-04	3.30E-04 3.30E-04 3.30E-04

Tab. 7: Read Mode M2R Test Data

Fig. 14: Class B Transient SEFI cross section in read mode M2R, Block Errors

Fig. 15: Class B Transient SEFI cross section in read mode M2R, all Errors

Fig. 16: Class C Persistent SEFI cross section in read mode M2R, Column Errors

Fig. 17: Class C Persistent SEFI cross section in read mode M2R, Row Errors Please note: no row errors where observed.

Fig. 18: Class C Persistent SEFI cross section in read mode M2R, Block Errors

Fig. 19: Class C Persistent SEFI cross section in read mode M2R, all Errors

Fig. 20: Class B+C Transient+Persistent SEFI cross section in read mode M2R, all Errors

6.2.2 Marching Mode with Power Cycle M5

In contrast to Read Mode Marching Mode implies Write and Erase operations, i.e. operations with activated high voltage generator.

Both, Transient (Class B) SEFIs and Persistent (Class C) SEFIs occurred in Marching Mode with power cycle (M5).

The respective test data are shown in Tab. 8.

The SEFIs are classified into Column Errors, Row Errors and Block Errors.

Fig. 21, Fig. 22 and Fig. 23 show the Class B+C column error (CE), row error (RE) and block error (BE) cross section versus LET, Fig. 24 the combined Class B+C cross section of all three SEFI types.

Each Marching step takes more time than a write or read step and therefore an only shorter address range could be tested. Due to the limited SEFI count both classes were accumulated.

Run	Run	lon	LET			Device			Mode	Fluence	Time	Average	Dose	Class B+C Errors								
IDA	RADEF		[MeV cm ² mg ⁻¹]	Marking	Tested Blocks	Туре	Date Code	Lot Code		F [cm ⁻²]	[s]	Flux [cm ⁻² s ⁻¹]	[rad]	CE	RE	BE	σ _{ce} [cm ² die ⁻¹]	σ _{RE} [cm²die ⁻¹]	σ _{BE} [cm²die ¹]	σ _{ClassB+C} [cm ² die ⁻¹]		
7 11 Σ	255 259	N N	1.8 1.8	M305 M306	117 116 116.5	MT29F16G08ABACAWP-IT:C MT29F16G08ABACAWP-IT:C	1122 1122	BYV7W87.21 BYV7W87.21	M5 M5	1.00E+07 1.00E+07 2.00E+07	245 259	4.08E+04 3.86E+04	1168 870	2 2	0	0	2.00E-07 < 1.00E-07 1.00E-07	< 1.00E-07 < 1.00E-07 < 5.00E-08	< 1.00E-07 < 1.00E-07 < 5.00E-08	2.00E-07 < 1.00E-07 1.00E-07		
15 19 Σ	263 267	N N	1.8 1.8	M412 M413	126 97 111.5	MT29F32G08ABAAAWP-IT:A MT29F32G08ABAAAWP-IT:A	1130 1130	BYZT5C7.21 BYZT5C7.21	M5 M5	1.01E+07 1.01E+07 2.02E+07	264 204	3.83E+04 4.95E+04	867 870	0	0	0	< 9.90E-08 < 9.90E-08 < 4.95E-08	< 9.90E-08 < 9.90E-08 < 4.95E-08	< 9.90E-08 < 9.90E-08 < 4.95E-08	< 9.90E-08 < 9.90E-08 < 4.95E-08		
98 102 Σ	410 414	Ne Ne	3.6 3.6	M310 M311	85 87 86	MT29F16G08ABACAWP-IT:C MT29F16G08ABACAWP-IT:C	1122 1122	BYV7W87.21 BYV7W87.21	M5 M5	5.02E+06 5.03E+06 1.01E+07	178 184	2.82E+04 2.73E+04	1712 1578	0	0	0	< 1.99E-07 < 1.99E-07 < 9.95E-08	< 1.99E-07 < 1.99E-07 < 9.95E-08	< 1.99E-07 < 1.99E-07 < 9.95E-08	< 1.99E-07 < 1.99E-07 < 9.95E-08		
90 94 Σ	402 406	Ne Ne	3.6 3.6	M415 M414	82 84 83	MT29F32G08ABAAAWP-IT:A MT29F32G08ABAAAWP-IT:A	1130 1130	BYZT5C7.21 BYZT5C7.21	M5 M5	5.05E+06 5.03E+06 1.01E+07	175 178	2.89E+04 2.83E+04	1132 3920	0	0	0	< 1.98E-07 < 1.99E-07 < 9.92E-08	< 1.98E-07 < 1.99E-07 < 9.92E-08	< 1.98E-07 < 1.99E-07 < 9.92E-08	< 1.98E-07 < 1.99E-07 < 9.92E-08		
70 75 Σ	381 386	Ar Ar	10.1 10.1	M310 M311	79 83 81	MT29F16G08ABACAWP-IT:C MT29F16G08ABACAWP-IT:C	1122 1122	BYV7W87.21 BYV7W87.21	M5 M5	9.93E+05 1.00E+06 1.99E+06	181 190	5.49E+03 5.26E+03	680 545	21 19 40	1 2 3	0	2.11E-05 1.90E-05 2.01E-05	1.01E-06 2.00E-06 1.51E-06	< 1.01E-06 < 1.00E-06 < 5.02E-07	2.22E-05 2.10E-05 2.16E-05		
82 86 Σ	393 397	Ar Ar	10.1 10.1	M414 M415	75 68 71.5	MT29F32G08ABAAAWP-IT:A MT29F32G08ABAAAWP-IT:A	1130 1130	BYZT5C7.21 BYZT5C7.21	M5 M5	1.01E+06 1.01E+06 2.02E+06	158 141	6.39E+03 7.16E+03	2888 356	23 11 34	1 1 2	0	2.28E-05 1.09E-05 1.68E-05	9.90E-07 9.90E-07 9.90E-07	< 9.90E-07 < 9.90E-07 < 4.95E-07	2.38E-05 1.19E-05 1.78E-05		
35 39 Σ	282 286	Fe Fe	18.5 18.5	M305 M306	41 63 52	MT29F16G08ABACAWP-IT:C MT29F16G08ABACAWP-IT:C	1122 1122	BYV7W87.21 BYV7W87.21	M5 M5	6.70E+05 1.01E+06 1.68E+06	86 138	7.79E+03 7.32E+03	1793 1941	41 45 86	1 2 3	0	6.12E-05 4.46E-05 5.12E-05	1.49E-06 1.98E-06 1.79E-06	< 1.49E-06 < 9.90E-07 < 5.95E-07	6.27E-05 4.65E-05 5.30E-05		
26 31 Σ	274 278	Fe Fe	18.5 18.5	M414 M415	83 65 74	MT29F32G08ABAAAWP-IT:A MT29F32G08ABAAAWP-IT:A	1130 1130	BYZT5C7.21 BYZT5C7.21	M5 M5	1.00E+06 7.61E+05 1.76E+06	187 144	5.35E+03 5.28E+03	871 623	53 31 84	7 2 9	0	5.30E-05 4.07E-05 4.77E-05	7.00E-06 2.63E-06 5.11E-06	< 1.00E-06 < 1.31E-06 < 5.68E-07	6.00E-05 4.34E-05 5.28E-05		
43 47 Σ	290 294	Kr Kr	32.1 32.1	M306 M305	87 95 91	MT29F16G08ABACAWP-IT:C MT29F16G08ABACAWP-IT:C	1122 1122	BYV7W87.21 BYV7W87.21	M5 M5	5.03E+05 5.02E+05 1.01E+06	183 199	2.75E+03 2.52E+03	2793 2702	84 74 158	6 7 13	1 1	1.67E-04 1.47E-04 1.57E-04	1.19E-05 1.39E-05 1.29E-05	< 1.99E-06 1.99E-06 9.95E-07	1.79E-04 1.63E-04 1.71E-04		
51 55 Σ	298 302	Kr Kr	32.1 32.1	M414 M415	66 105 85.5	MT29F32G08ABAAAWP-IT:A MT29F32G08ABAAAWP-IT:A	1130 1130	BYZT5C7.21 BYZT5C7.21	M5 M5	3.85E+05 5.04E+05 8.89E+05	141 221	2.73E+03 2.28E+03	1775 1697	50 55 105	4 5 9	0	1.30E-04 1.09E-04 1.18E-04	1.04E-05 9.92E-06 1.01E-05	< 2.60E-06 < 1.98E-06 < 1.12E-06	1.40E-04 1.19E-04 1.28E-04		
61*	308	Xe	60	M306	47	MT29F16G08ABACAWP-IT:C	1122	BYV7W87.21	M5	4.34E+04	98	4.43E+02	3190	14	4		3.23E-04	9.22E-05	< 2.30E-05	4.15E-04		

* Destructive Failure @ F = 4.3E4 cm-2

 Tab. 8: Marching Mode with Power Cycle M5 Test Data

Fig. 21: Class B+C Transient+Persistent SEFI cross section in marching mode M5, Column Errors

Fig. 22: Class B+C Transient+Persistent SEFI cross section in marching mode M5, Row Errors

Fig. 23: Class B+C Transient+Persistent SEFI cross section in marching mode M5, Block Errors

Fig. 24: Class B+C Transient+Persistent SEFI cross section in marching mode M5, all Errors

6.2.3 Marching Mode without Power Cycle M1

Both, Transient (Class B) SEFIs and Persistent (Class C) SEFIs occurred in Marching Mode without power cycle (M1).

The respective test data are shown in Tab. 9.

The SEFIs are classified into Column Errors, Row Errors and Block Errors.

Fig. 25, Fig. 26 and Fig. 27 show the Class B+C column error (CE), row error (RE) and block error (BE) cross section versus LET, Fig. 28 the combined Class B+C cross section of all three SEFI types.

ID A	

Run	Run	lon	LET			Device			Mode	Fluence	Time	Average	Dose							
IDA	RADEF		[MeV cm ² mg ⁻¹]	Marking	Tested Blocks	Туре	Date Code	Lot Code		F [cm ⁻²]	[s]	Flux [cm ⁻² s ⁻¹]	[rad]	CE	RE	BE	σ _{cε} [cm²die ⁻¹]	σ _{RE} [cm²die ⁻¹]	σ _{BE} [cm²d	ie σ _{ClassB+C} [cm ² die ⁻¹]
6 10 Σ	254 258	N N	1.8 1.8	M305 M306	167 163 165	MT29F16G08ABACAWP-IT:C MT29F16G08ABACAWP-IT:C	1122 1122	BYV7W87.21 BYV7W87.21	M1 M1	1.01E+07 1.01E+07 2.02E+07	233 235	4.33E+04 4.30E+04	880 582	0	0	0	< 9.90E-08 < 9.90E-08 < 4.95E-08	< 9.90E-08 < 9.90E-08 < 4.95E-08	< 9.90E-0 < 9.90E-0 < 4.95E-0	8 < 9.90E-08 8 < 9.90E-08 8 < 4.95E-08
14 18 Σ	262 266	N N	1.8 1.8	M412 M413	187 205 196	MT29F32G08ABAAAWP-IT:A MT29F32G08ABAAAWP-IT:A	1130 1130	BYZT5C7.21 BYZT5C7.21	M1 M1	1.00E+07 1.00E+07 2.00E+07	283 291	3.53E+04 3.44E+04	576 579	0	0	0	< 1.00E-07 < 1.00E-07 < 5.00E-08	< 1.00E-07 < 1.00E-07 < 5.00E-08	< 1.00E-0 < 1.00E-0 < 5.00E-0	7 < 1.00E-07 7 < 1.00E-07 8 < 5.00E-08
97 101 Σ	409 413	Ne Ne	3.6 3.6	M310 M311	123 131 127	MT29F16G08ABACAWP-IT:C MT29F16G08ABACAWP-IT:C	1122 1122	BYV7W87.21 BYV7W87.21	M1 M1	5.05E+06 5.02E+06 1.01E+07	173 186	2.92E+04 2.70E+04	1423 1288	0	0	0	< 1.98E-07 < 1.99E-07 < 9.93E-08	< 1.98E-07 < 1.99E-07 < 9.93E-08	< 1.98E-0 < 1.99E-0 < 9.93E-0	7 < 1.98E-07 7 < 1.99E-07 8 < 9.93E-08
89 93 Σ	401 405	Ne Ne	3.6 3.6	M415 M414	122 123 122.5	MT29F32G08ABAAAWP-IT:A MT29F32G08ABAAAWP-IT:A	1130 1130	BYZT5C7.21 BYZT5C7.21	M1 M1	5.05E+06 5.03E+06 1.01E+07	174 177	2.90E+04 2.84E+04	1132 3630	0	0	0	< 1.98E-07 < 1.99E-07 < 9.92E-08	< 1.98E-07 < 1.99E-07 < 9.92E-08	< 1.98E-0 < 1.99E-0 < 9.92E-0	7 < 1.98E-07 7 < 1.99E-07 8 < 9.92E-08
69 74 Σ	380 385	Ar Ar	10.1 10.1	M310 M311	120 105 112.5	MT29F16G08ABACAWP-IT:C MT29F16G08ABACAWP-IT:C	1122 1122	BYV7W87.21 BYV7W87.21	M1 M1	1.01E+06 1.01E+06 2.02E+06	171 145	5.91E+03 6.97E+03	519 383	29 25 54	3 4 7	0	2.87E-05 2.48E-05 2.67E-05	2.97E-06 3.96E-06 3.47E-06	< 9.90E-0 < 9.90E-0 < 4.95E-0	7 3.17E-05 7 2.87E-05 7 3.02E-05
79 85 Σ	390 396	Ar Ar	10.1 10.1	M414 M415	146 94 120	MT29F32G08ABAAAWP-IT:A MT29F32G08ABAAAWP-IT:A	1130 1130	BYZT5C7.21 BYZT5C7.21	M1 M1	9.28E+05 9.71E+05 1.90E+06	219 136	4.24E+03 7.14E+03	2538 157	5 16 21	0	0	5.39E-06 1.65E-05 1.11E-05	< 1.08E-06 < 1.03E-06 < 5.27E-07	< 1.08E-0 < 1.03E-0 < 5.27E-0	6 5.39E-06 6 1.65E-05 7 1.11E-05
34 38 Σ	281 285	Fe Fe	18.5 18.5	M305 M306	38 56 47	MT29F16G08ABACAWP-IT:C MT29F16G08ABACAWP-IT:C	1122 1122	BYV7W87.21 BYV7W87.21	M1 M1	4.34E+05 6.17E+05 1.05E+06	54 79	8.04E+03 7.81E+03	1595 1642	21 39 60	2 2	0	4.84E-05 6.32E-05 5.71E-05	< 2.30E-06 3.24E-06 1.90E-06	< 2.30E-0 < 1.62E-0 < 9.51E-0	6 4.84E-05 6 6.65E-05 7 5.90E-05
24 29 Σ	272 277	Fe Fe	18.5 18.5	M414 M415	29 41 35	MT29F32G08ABAAAWP-IT:A MT29F32G08ABAAAWP-IT:A	1130 1130	BYZT5C7.21 BYZT5C7.21	M1 M1	2.29E+05 3.43E+05 5.72E+05	40 58	5.73E+03 5.91E+03	364 398	6 11 17	0	0	2.62E-05 3.21E-05 2.97E-05	< 4.37E-06 < 2.92E-06 < 1.75E-06	< 4.37E-0 < 2.92E-0 < 1.75E-0	6 2.62E-05 6 3.21E-05 6 2.97E-05
42 46 Σ	289 293	Kr Kr	32.1 32.1	M306 M305	22 54 38	MT29F16G08ABACAWP-IT:C MT29F16G08ABACAWP-IT:C	1122 1122	BYV7W87.21 BYV7W87.21	M1 M1	7.80E+04 1.77E+05 2.55E+05	26 74	3.00E+03 2.39E+03	2535 2445	5 16 21	2 2	0	6.41E-05 9.04E-05 8.24E-05	< 1.28E-05 1.13E-05 7.84E-06	< 1.28E-0 < 5.65E-0 < 3.92E-0	5 6.41E-05 6 1.02E-04 6 9.02E-05
50 54 Σ	297 301	Kr Kr	32.1 32.1	M414 M415	78 137 107.5	MT29F32G08ABAAAWP-IT:A MT29F32G08ABAAAWP-IT:A	1130 1130	BYZT5C7.21 BYZT5C7.21	M1 M1	2.90E+05 5.01E+05 7.91E+05	114 193	2.54E+03 2.60E+03	1577 1438	16 65 81	2 5 7	0	5.52E-05 1.30E-04 1.02E-04	6.90E-06 9.98E-06 8.85E-06	< 3.45E-0 < 2.00E-0 < 1.26E-0	6 6.21E-05 6 1.40E-04 6 1.11E-04
59*	306	Xe Foilure /	60 0 E 0 E	M305	57	MT29F16G08ABACAWP-IT:C	1122	BYV7W87.21	M1	8.51E+04	83	1.03E+03	3235	3	3		3.53E-05	3.53E-05	< 1.18E-0	5 7.05E-05

Tab. 9: Marching Mode without Power Cycle M1 Test Data

Fig. 25: Class B+C Transient+Persistent SEFI cross section in marching mode M1, Column Errors

Fig. 26: Class B+C Transient+Persistent SEFI cross section in marching mode M1, Row Errors

Fig. 27: Class B+C Transient+Persistent SEFI cross section in marching mode M1, Block Errors

Fig. 28: Class B+C Transient+Persistent SEFI cross section in marching mode M1, all Errors

6.3 Destructive Failures

Under heavy ion irradiation, NAND-Flash is prone to destructive failures (DF). Typically, erase and write are no longer operable, but read is still functional. In contrast to SEL, the DF is not accompanied by an excessive persistent rise of the supply current, but in many cases by a moderate step (factor of 4) of the supply current. The DF event is of statistical nature, just as the SEU and the SEFI events. Fig. 29 shows DF cross section curves from several test campaigns. Open symbols indicate "no DF until the applied fluence". The state of the art 16-Gbit

device delivers $\sigma_{sat} \approx 1.0 \times 10^{-5} \text{ cm}^2$ and LET_{th} $\approx 15 \text{ MeV cm}^2/\text{mg}$. The threshold LET of this 25 nm Micron device is lowered in comparison to the 50 nm 8-Gbit Samsung device.

Fig. 29: DF cross section curves, open symbols indicate "no DF until the applied fluence"

The saturation cross section of 1.0×10^{-5} cm² describes a sensitive area of $30 \times 30 \ \mu$ m². By masking of the chip surface and also by IR hot spot sensing [6], [7], the sensitive area has been located to be the capacitor-switch cascade of the HV generator and its surroundings. Furthermore, it has been demonstrated that in the DF case, the high voltage drops to a significantly lower value [6]. Presumably, the hit of a high LET ion induces a SEGR of the comparative-ly thick oxide of the HV switching transistors.

We examined the flux dependence (flux between 30 and 8000 cm⁻² s⁻¹) of Samsung 8-Gbit NAND-Flash DFs. From the negative outcome, we conclude that the DF is triggered by a single hit and not by the coincidence of several hits.

Ions of normal incidence - namely those travelling in parallel to the electric field - should be most dangerous with respect to SEGR. The worst case simplification that ions of all directions are as dangerous as those of normal incidence delivers estimates of the mean time until DF occurrence for 1AU, GCR, 3.7mm Al: between $1.4 \times 10^{+6}$ years (8-Gbit and 16-Gbit Micron) and $2.5 \times 10^{+5}$ years (8-Gbit Samsung). For comparison, the failure rates of commercial memory devices are in the order of 1 FIT, which is equivalent to an average time to failure of $1 \times 10^{+9}$ h = $1.2 \times 10^{+5}$ years. Accordingly, ion induced DFs increase the overall device failure rate by less than a factor of two. To give a concrete example, in a large space mass memory of e.g. 1000 memory devices, a DF can be expected after more than two hundred and fifty years on average.

At DF occurrence, the program current of the 8-Gbit Samsung device jumps from its plateau amplitude of 40 mA maximum to a continuous current of 80 mA. The DF occurrence is independent of the irregularities of the supply current such as occasional current spikes of several 100 mA or the stepping of the erase / program current pulse. Presumably, these spikes are caused by bus contentions in consequence of a hit induced disturbance of the controlling state machine.

Fig. 30 shows the supply current waveform during the programming of a page. The current rises to a pulse plateau with superimposed needles. These needles reflect the sequence of HV program pulses. Under irradiation, the plateau widens and its amplitude grows, step by step.

Fig. 30: Development of the program current window until DF occurrence, (a) soon after irradiation start, (b) midway to the final saturation waveform, (c) the final saturation waveform and (d) after DF occurrence, Samsung 8-Gbit NAND-Flash

At the begin of this work we got the impression that the stepping of the supply current leads finally to a DF but a more detailed analysis of the respective waveforms of later test campaigns delivered clearly that such a connection does not exist. DFs occurred as well after stepts (b) and (c) as directly after step (a).

6.4 Soft SEU Annealing

All soft and all hard SEUs are falsifications in $0 \rightarrow 1$ direction. They indicate or fake a loss of FG electrons. Fig. 31 shows the SEU annealing of an earlier 4-Gbit ST NAND-Flash device. SEUs induced by ions of LET between 10 and 32.1 (Ar, Fe, Kr) show significant annealing. For low LET ions, the annealing is more intensive than for high LET ions.

They originate from two effects: a) loss of the negative floating gate charge and b) positive charge trapping near the floating gate. Charge loss is irreversible, trapping is reversible with time.

Fig. 31: Annealing of SEUs, baking at 100°C started after 40 days, ST 4-Gbit NAND-Flash [8]

In case of annealing, charge trapping is the error creating effect. In case of the earlier 4-Gbit device, even at argon about 90% of the SEUs are due to charge trapping and only the remaining 10% are due to charge loss from the FG. At krypton, still about 40% of the SEUs are due to charge trapping.

The actual test of the 25nm 16-Gbit Micron devices shows significant annealing only for SEUs induced by very low LET ions (nitrogen, LET = $1.8 \text{ MeV cm}^2/\text{mg}$, Fig. 32). SEU generation by charge trapping is restricted to very low LET. Even at neon, nearly all SEUs are due to charge loss.

Fig. 32: Annealing of SEUs, Micron 16/32-Gbit NAND-Flash

Fig. 33 illustrates the trend that with scaling of the feature size, charge loss becomes dominating over charge trapping. The trapped charge domain is restricted more and more to lower LET. Remarkably devices of the same type but different lot code differed substantially with respect to the annealing behaviour.

Fig. 33: Percentage of annealed SEUs, 120 hours after irradiation as a function of ion LET

6.5 Hard SEU Annealing

Hard SEUs survive a reversal of the cell status by erase-write immediately after beam stop and error verification. We observed annealing of hard SEUs for 16-Gbit NAND-Flash (Fig. 34). The logarithmically scaled bar graph shows the cross section of (i) the total of soft and hard SEUs, (ii) the share of hard SEUs directly after exposure, (iii) the annealing of soft SEUs after 20 days and (iv) the annealing of hard SEUs after 20 days.

Fig. 34: Total of soft and hard SEUs, share of hard SEUs directly after exposure and 20 days later, 16-Gbit Micron SLC NAND-Flash

The share of hard SEUs (Fig. 34, blue part of the bar) increases steadily with LET from 3×10^{-3} % at nitrogen to nearly 100% at xenon. Significant annealing of soft SEUs exists only at nitrogen. In contrast the soft SEUs, typically more than one half of the hard SEUs anneal within 20 days.

Fig. 35 shows the respective cross sections over the linear LET scale. Starting with iron, the cross section per bit exceeds the chip area per bit of 6×10^{-11} cm², which indicates an increasing count of multi-bit SEUs.

Fig. 35: Cross section of SEUs, share of hard SEUs directly after exposure and 20 days later, 16-Gbit Micron SLC NAND-Flash

All multi-SEUs extend in column direction. Fig. 36 illustrates this for the 25nm Micron 16-Gbit device under normal incidence of xenon ions (LET ≈ 60 MeV cm²/mg). Soft SEUs are indicated by small diamonds and hard SEUs by large horizontal bars. In many cases, one or several hard SEUs are accompanied by soft SEUs on one or on both sides.

In our interpretation the hard SEUs indicate the hit position, the soft SEUs the charge deposition in the neighbourhood.

Fig. 36: Micron 16-Gbit SLC NAND-Flash, MBUs at normal incidence, Xe, LET = 60

Fig. 37 shows the annealing of hard SEUs versus time. For all ion species except xenon we get substantial annealing, more pronounced for lower LET ions.

Fig. 37: Short term and long term hard error annealing, Micron 16/32-Gbit NAND-Flash DUTs unbiased
Xenon, iron and neon induced hard SEUs show some reverse annealing for some ten minutes after exposure.

An erase-write operation after 100 days (Fig. 32) delivered a complete annealing of the heavy ion induced hard SEUs. Only a fraction of the nitrogen induced hard SEUs survived, but disappeared within the following 30 erase/write cycles.

One hundred days after irradiation, the read of the xenon exposed DUT delivered 95% of the initial count of hard SEUs. An erase-write-read reduced this count to 55%. But then, the count of hard errors increased again with time as depicted in Fig. 38.

Fig. 38: Development of the hard SEU count after repeated erase-write-read cycles

6.6 Discussion

The stepping of the program current (Fig. 30) reflects a closed loop controlled adaptation of the count of high voltage pulses. We assume that the HV leakage current increases by ion induced defects, possibly by micro latch ups [7]. The associated reduction of the pulse tunnel current is compensated by more programming pulses.

The pulse tunnel current is the program current which appears between FG and channel induced by the high voltage pulses generated by the program charge pump. Every high voltage pulse induces a current spike at the supply rail. These spikes were measured and shown in Fig. 30.

After a given number of compensation steps, this process comes to an end, mostly before DF occurrence, but the converse situation happens as well. The mean time until DF is larger than the mean time until the freeze of the adaptation of the program pulse sequence.

The fact that a further degradation of the program pulse voltage cannot be compensated any more by an increased count of program pulses raises some concern about the long term data retention. The decreasing amount of injected FG charge should result in a reduced data reten-

tion time. In consequence, for applications with large data storage time, the usability of the device should be determined by the freezing of the program pulse window rather than by the DF occurrence. This issue requires further investigation.

Presumably, the center of the hard error pattern given in Fig. 36 reflects the shortest distance between the transistor string and the ion track. The SEUs always affect the same bit position of the same byte of subsequent pages. Physically, in the string of concatenated transistors, the channels of adjacent transistors cannot be depleted by the lowered word line voltage.

This seems to indicate that the hard SEUs are caused by a large trapped charge, which cannot be compensated by the negative charge of a single write cycle, and which anneals over time.

The write operation charges all FGs including those with impaired insulation. The starting count of hard SEUs reflects cells which are in erroneous state (i) because of still not sufficiently removed trapped holes, or (ii) because of an immediate loss of FG electrons due to a leakage current of more than some ten electrons per second.

The increasing count of hard SEUs (Fig. 38) reflects the discharge of less impaired FG structures by an even smaller leakage current. If, for example, an additional SEU is created by the loss of a floating gate charge of 360 electrons in one hour, then the leakage amounts to only one electron per second or 1.6×10^{-4} fA.

The "reverse annealing" of the heavier ion curves in Fig. 37 can be explained by the superposition of the increasing count of "resistive" hard SEUs and the decreasing count of "charge trapping" SEUs. The steady loss of FG electrons makes more and more "resistive" hard SEUs visible.

Persistent hard errors accumulate over the mission time. Their detrimental effect on the error rate increases steadily. In contrast, soft SEUs accumulate only over the data storage time, which is only of some days in many cases. in consequence, hard errors survive scrubbing and can therefore be more harmful. Scrubbing is a measure to reduce the storage time.

7 Run Table January Test

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
		M3a	3	251	226	1.00E+07	4.4E+04	1	2938	
		M2r	4	252	9	3.43E+05	3.8E+04	1		operating error
		M2r	5	253	231	1.01E+07	4.4E+04	11	15730	
		R	5.a				-		2737	
		M1	6	254	233	1.01E+07	4.3E+04	2	2221	
		M5	7	255	245	1.00E+07	4.1E+04	1	4855	

Tab. 10: Run Table of Micron 16-Gbit DUT M305, N, LET = 1.8, 64 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
		M3a	8	257	242	1.00E+07	4.1E+04	8	0	
		R	8.a				-		0	

Tab. 11: Run Table of Micron 8-Gbit DUT MC14, N, LET = 1.8, 64 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
		M3a	9	257	252	1.01E+07	4.0E+04	1	4665	
		M1	10	258	235	1.01E+07	4.3E+04	2	3553	
		M5	11	259	245	1.00E+07	4.1E+04	1	6007	
		M2r	12	260	231	1.01E+07	4.4E+04	11	22570	
		R	12.a				-		3963	
		R	12.b				-		3803	

Tab. 12: Run Table of Micron 16-Gbit DUT M306, N, LET = 1.8, 64 blocks tested

Pre-	stuck	Mode	Run	Run	Time	Fluence	Flux	Loops	Errors	Remarks
paration	bits		IDA	RADEF						

	M3a	13	261	259	1.00E+07	3.9E+04	1	3439	
	M1	14	262	267	1.00E+07	3.7E+04	2	2581	
	M5	15	263	264	1.01E+07	3.8E+04	1	4574	
	M2a	16	264	275	1.00E+07	3.6E+04	13	19098	
	R	16.a				_		2863	
	R	16.b				-		2838	

Tab. 13: Run Table of Micron 32-Gbit DUT M412, N, LET = 1.8, 64 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
		M3a	17	265	273	1.01E+07	3.7E+04	1	3498	
		M1	18	266	291	1.00E+07	3.4E+04	18	2731	
		M5	19	267	204	1.01E+07	5.0E+04	1	4199	
		M2a	20	268	175	1.01E+07	5.8E+04	8	14489	
		R	20.a				-		3357	

Tab. 14: Run Table of Micron 32-Gbit DUT M413, N, LET = 1.8, 64 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
		M3a	21	269	190	1.00E+07	5.3E+04	1	0	beamline closed
		M3a	22	270	191	1.01E+07	5.3E+04	1	77229	Timeout, MBUs
PC		R	22.a				-	1	60038	
		BG					-		2755	
		R	22.b				-		2629	

Tab. 15: Run Table of Micron 32-Gbit DUT M413, Fe, LET = 18.5, 64 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
		M3a	23	271	206	1.00E+06	4.9E+03		5605	few 2-

									BEs
	R	23.a				-		5570	
	BG							170	
	M1	24	272	40	2.29E+05	5.7E+03		2131	Timeout
85	M5	25	273	140	7.13E+05	5.1E+03		63385	Timeout
143	M5	26	274	187	1.00E+06	5.3E+03		92803	Timeout
210	M2r	27	275	121	1.01E+06	8.3E+03	6	>>	
5755						-			many SBs

Tab. 16: Run Table of Micron 32-Gbit DUT M414, Fe, LET = 18.5, 64 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
		M3a	28	276	157	1.00E+06	6.4E+03		>>	
		R	28.a				-		6487	
	368	M1	29	277	58	3.43E+05	5.9E+03			Timeout
	296	M5	30				-			Tuning
	296	M5	31	278	144	7.61E+05	5.3E+03		37891	Timeout
	325	M2r	32	279	177	1.01E+06	5.7E+03		>>	BE PC+, BE+
PC		R	32.a				-			

Tab. 17: Run Table of Micron 32-Gbit DUT M415, Fe, LET = 18.5, 64 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
		R	32.b				-		>>	BE
	0	M3a	33	280	171	1.01E+06	5.9E+03		22724	stuck bits von N at the next day 0, Timeout
		R	33.a				-		5755	
	266	M1	34	281	54	4.34E+05	8.0E+03			TO PC-

	262	M5	35	282	86	6.70E+05	7.8E+03		PC, TO PC-
	337	M2r	36	283	132	1.02E+06	7.7E+03	>>	BE, BE+, BE same place+, BE PC+
PC		R	36.a				-	5860	

Tab. 18: Run Table of Micron 16-Gbit DUT M305, Fe, LET = 18.5, 64 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
		R	36.b				-		3733	stuck bits of N at the next day
	0	M3a	37	284	133	1.01E+06	7.6E+03		6258	
		R	37.a				-		6210	
	325	M1	38	285	79	6.17E+05	7.8E+03		28637	Timeout, PC-
PC	375	M5	39	286	138	1.01E+06	7.3E+03		41831	Timeout PC-
	499	M2	40	287	165	1.00E+06	6.1E+03		>>	Timeout during BG
PC		R	40.a				-		6367	
		R	40.b				-		6112	after lunch break, (45 min)

Tab. 19: Run Table of Micron 16-Gbit DUT M306, Fe, LET = 18.5, 64 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
	364	M3a	41	288	185	5.01E+05	2.7E+03		6034	
		R	41.a				-		6005	
	1135	M1	42	289	26	7.80E+04	3.0E+03		2763	Timeout, PC-

PC	018	M5	13	290	183	5.03E±05	2 7E±03		
IC	910	IVI J	43	290	105	J.05E+05	2.712+05	 //	
	1379	M2	44	291	194	5.03E+05	2.6E+03	>>	
		R	44.a				-	6740	

Tab. 20: Run Table of Micron 16-Gbit DUT M306, Kr, LET = 32.1, 64 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
		R	44.b				-			operating error
		R	44.c				-		5611	
	227	M3a	45	292	176	5.03E+05	2.9E+03		5465	
		R	45.a				-		5447	
	921	M1	46	293	74	1.77E+05	2.4E+03		75635	Timeout, PC-
	820	M5	47	294	199	5.02E+05	2.5E+03			
	1118	M2r	48	295	186	5.03E+05	2.7E+03		>>	first CE, BE PC+
PC		R	48.a				-		5965	

Tab. 21: Run Table of Micron 16-Gbit DUT M305, Kr, LET = 32.1, 64 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
		R	48.b				-		5565	
	94	M3a	49	296	205	5.03E+05	2.5E+03		4888	
		R	49.a				-		4875	
	570	M1	50	297	114	2.90E+05	2.5E+03		34713	Timeout, PC-
	539	M5	51	298	141	3.85E+05	2.7E+03			Timeout, PC-, Controller Reset+
	563	M2r	52	299	212	5.02E+05	2.4E+03		>>	
PC		R	52.a				_		5267	

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
		R	52.b				-		5530	
	222	M3a	53	300	202	5.05E+05	2.5E+03		5589	
		R	53.a				-		5575	
	1002	M1	54	301	193	5.01E+05	2.6E+03		>>	
	1155	M5	55	302	221	5.04E+05	2.3E+03		>>	
	1402	M2r	56	303	209	5.05E+05	2.4E+03		>>	BE @ 1.6E5, PC+, 3BE remaining
		R	56.a				-		6453	

Tab. 22: Run Table of Micron 32-Gbit DUT M414, Kr, LET = 32.1, 64 blocks tested

Tab. 23: Run Table of Micron 32-Gbit DUT M415, Kr, LET = 32.1, 64 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
		M3a	57	304	192	5.05E+05	2.6E+03		>>	3 BE
		R	57.a				-		5363	

Tab. 24: Run Table of Micron 16-Gbit DUT M307, Kr, LET = 32.1, 64 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
		R	57.p				-		5543	
	965	M3a	58	305	204	2.01E+05	9.9E+02		4819	12 BE
PC		R	58.a				-		4786	
	1757	M1	59	306	83	8.51E+04	1.0E+03		>>	CS, PC-, write op. failed

Tab. 25: Run Table of Micron 16-Gbit DUT M305, Xe, LET = 60, 64 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
	1215	M3a	60	307	219	1.01E+05	4.6E+02		3421	
		R	60.a				-		3431	
	1564	M5	61	308	98	4.34E+04	4.4E+02		>>	CS, PC-, write op. failed

Tab. 26: Run Table of Micron 16-Gbit DUT M306, Xe, LET = 60, 64 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
		M3a	62	309	246	1.01E+05	4.1E+02		1958	
		R	62.a				-		1939	
	363	M2r	63	310	244	1.00E+05	4.1E+02		>>	2 BE
		R	63.a				-			PC for- gotten
PC		R	63.b				-		2345	

Tab. 27: Run Table of Micron 16-Gbit DUT M310, Xe, LET = 60, 64 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
		R	63.c				-		4993	
	467	M3a	64	311	240	1.00E+05	4.2E+02		2354	
PC		R	64.a				-		2344	
	731	R	64.b				-		662	
	662	M2r	65	312	260	1.00E+05	3.8E+02	12	>>	CS @ 2.5E4, PC+, transient BE
PC		R	65.a				-		2376	

Tab. 28: Run Table of Micron 32-Gbit DUT M414, Xe, LET = 60, 64 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
		R	65.b				-		5978	
	1141	M3a	66	313	240	1.01E+05	4.2E+02		>>	
		R	66.a				-		3089	
	1435	M2r	67	314	249	1.00E+05	4.0E+02	11	>>	
PC		R	67.a				-		4248	remaining CE after PC
PC		R	67.b				-		4238	remaining CE after PC

Tab. 29: Run Table of Micron 32-Gbit DUT M415, Xe, LET = 60, 64 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
PC		R	67.a				-			irrelevant
		R	67.b				-		2142	
	286	M3a	68	379	169	1.01E+06	6.0E+03		>>	1 BE
PC		R	68.a				-		3101	
	237	M1	69	380	171	1.01E+06	5.9E+03	1	36676	
	123	M5	70	381	170	9.93E+05	5.8E+03			Timeout @ 9.5E5, PC-, PC+, DUT OK
	78	M2r	71	382	170	1.00E+06	5.9E+03	7	>>	Timeout @ 1.5E5, PC+, BE
PC		R	71.a				-		2804	

Tab. 30: Run Table of Micron 16-Gbit DUT M310, Ar, LET = 10.1, 64 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
	0	M3a	72	383	168	1.01E+06	6.0E+03	1	3035	

		R	72.a				-		3026	
	16	M1	73	384	60	3.50E+05	5.8E+03	0		Timeout @ 3.0E5, PC+
	9	M1	74	385	145	1.01E+06	7.0E+03	1	65800	
	12	M5	75	386	171	1.00E+06	5.8E+03	1	36332	
	21	M2b	76	387	157	1.01E+06	6.4E+03		>>	
		R	76.a				-		>>	
PC		R	76.b				-		3065	

Tab. 31: Run Table of Micron 16-Gbit DUT M311, Ar, LET = 10.1, 64 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
	0	M3a	77	388	151	1.01E+06	6.7E+03	1	2806	
PC		R	77.a				-	1	2809	

Tab. 32: Run Table of Micron 16-Gbit DUT M308, Ar, LET = 10.1, 64 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
		R	77.m				-	1	2156	
	463	M3a	78	389	160	1.01E+06	6.3E+03	1	3202	
		R	78.a				-	1	3193	
	377	M1	79	390	219	9.28E+05	4.2E+03	?	?	unstable flux, Timeout @ 8.8E5, PC+
	203	M1	80	391	166	1.01E+06	6.1E+03	?	?	
	112	M5	81	392	26	1.46E+05	5.6E+03	?	?	Timeout @ 1.0E5, PC+
	81	M5	82	393	158	1.01E+06	6.4E+03	?	?	
	63	M2r	83	394	177	1.01E+06	5.7E+03	8	>>	2 BE
PC		R	83.a				-		2611	

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
	1051	M3a	84	395	143	1.01E+06	7.1E+03	1	3779	
		R	84.a				-	1	3766	
	924	M1	85	396	136	9.71E+05	7.1E+03	1	7838	Timeout @ 9.1E5, PC
PC	542	M5	86	397	141	1.01E+06	7.2E+03	1	40522	
PC	395	M2r	87	398	140	1.00E+06	7.1E+03	1	>>	Timeout @ 2.9E5, PC+
PC		R	87.a				-		3134	

Tab. 33: Run Table of Micron 32-Gbit DUT M414, Ar, LET = 10.1, 64 blocks tested

Tab. 34: Run Table of Micron 32-Gbit DUT M415, Ar, LET = 10.1, 64 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
	360			399	60	1.92E+05	3.2E+03			flux too low
	332	M3a	88	400	175	5.02E+06	2.9E+04	1	>>	1 BE
PC		R	88.a				-	1	5080	
	313	M1	89	401	174	5.05E+06	2.9E+04	1	4164	
	228	M5	90	402	175	5.05E+06	2.9E+04	1	6645	
	181	M2r	91	403	176	5.04E+06	2.9E+04		>>	
PC		R	91.a				-		4835	

Tab. 35: Run Table of Micron 32-Gbit DUT M415, Ne, LET = 3.6, 64 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
		R	91.b				-	1	2556	
	51	M3a	92	404	179	5.02E+06	2.8E+04	1	>>	4 BE
PC		R	92.a				-	1	4756	

	45	M1	93	405	177	5.03E+06	2.8E+04	1	3894	
PC	31	M5	94	406	178	5.03E+06	2.8E+04	1	6246	
PC	20	M2r	95	407	177	5.06E+06	2.9E+04	8	>>	
PC		R	95.a				-		4765	

Tab. 36: Run Table of Micron 32-Gbit DUT M414, Ne, LET = 3.6, 64 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
	71	M3a	96	408	174	5.05E+06	2.9E+04	1		2 BE
		R	96.a				-	1	4802	
	55	M1	97	409	173	5.05E+06	2.9E+04	1	3929	
PC	38	M5	98	410	178	5.02E+06	2.8E+04	1	7100	not only SEUs
	28	M2b	99	411	186	5.04E+06	2.7E+04	8	>>	
PC		R	99.a				-	1	4752	

Tab. 37: Run Table of Micron 16-Gbit DUT M310, Ne, LET = 3.6, 64 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
		R	99.b				-		2941	
	7	M3a	100	412	190	5.06E+06	2.7E+04	1	>>	BE
		R	100.a				-		5043	few 2BE
	7	M1	101	413	186	5.02E+06	2.7E+04	2	3937	
PC	3	M5	102	414	184	5.03E+06	2.7E+04	1	6197	
	2	M2r	103	415	188	5.02E+06	2.7E+04	9	>>	
PC		R	103.a				-	1	4930	

Tab. 38: Run Table of Micron 16-Gbit DUT M311, Ne, LET = 3.6, 64 blocks tested

8 Run Table April Test

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
Foil		M1	1	1	47	2.65E+06	5.6E+04	0		
Foil		M1	2	2	129	6.81E+06	5.3E+04	2		Erase failed, Program failed

Tab. 39: Run Table of Micron 16-Gbit DUT M312, Kr, LET = 32.1, 32 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
Foil		M1	3	3	870	4 95E+06	5 7E+03	17		
1011		1011	5	5	070	1.951100	5.711105	17		
Foil		M1	4	4	1289	6.97E+06	5.4E+03	25		
Foil		M1	5	5	80	4.20E+05	5.3E+03	3		
Foil		M1	6				-			DF

Tab. 40: Run Table of Micron 16-Gbit DUT M313, Kr, LET = 32.1, 32 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
Foil		M1	7	6	56	5.89E+05	1.1E+04	0		
Foil		M1	8	7	45	4.81E+05	1.1E+04	1		DF

Tab. 41: Run Table of Micron 16-Gbit DUT M314, Kr, LET = 32.1, 32 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
Foil		M3	8.a				-			
Foil		M3b	9	8	83	1.01E+06	1.2E+04	1	1655	
Foil		R	9.a				-	1		PC, 1 SB
Foil		M1	10				-			no beam
Foil		M1	11	9	59	7.16E+05	1.2E+04	1		

Foil		M1	12	10	381	4.55E+06	1.2E+04	7	
Foil		M1	13	11	517	6.28E+06	1.2E+04	10	
Foil	3	M1	14	12	526	6.14E+06	1.2E+04	10	
Foil	3	M1	15	13	37	4.38E+05	1.2E+04	0	
Foil	3	M1	16	14	227	2.63E+06	1.2E+04	4	
Foil	3	M1	17	15	23	2.72E+05	1.2E+04	1	Erase OK, program
									failes

Tab. 42: Run Table of Micron 16-Gbit DUT M315, Kr, LET = 32.1, 32 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
		M3a	18	16	83	1.02E+06	1.2E+04	1	11775	2BU, 1867 SB

Tab. 43: Run Table of Micron 16-Gbit DUT M316, Kr, LET = 32.1, 64 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
	1867	M1	19	17	20	2.30E+05	1.2E+04	0	775	
		M1	20	18	16	1.92E+05	1.2E+04	0		
	757	M1	21	19	40	4.93E+05	1.2E+04	0		
	924	M1	22	20	12	1.39E+05	1.2E+04	0		1 persistent CE
	>>	M1	23	21	40	4.97E+05	1.2E+04	0		CEs
	1101	M1	24	22	82	1.02E+06	1.2E+04			
		M1		23	83	1.01E+06	1.2E+04	3		continuation RADEF Run 22
	1898	M1	25	24	57	7.15E+05	1.3E+04	0		
	1892	M1	26	25	18	2.14E+05	1.2E+04	0		
		M1	27	26	18	2.20E+05	1.2E+04	0		
	1377	M1	28	27	76	9.17E+05	1.2E+04			

 1762	M1	29	28	12	1.45E+05	1.2E+04	0	
1438	M1	30	29	23	3.02E+05	1.3E+04	0	
1335	M1	31	30	45	5.67E+05	1.3E+04	0	
1437	M1	32	31	33	4.20E+05	1.3E+04	0	
1487	M1	33	32	42	5.53E+05	1.3E+04	0	
1562	M1	34	33	11	1.40E+05	1.3E+04	0	
1240	M1	35	34	27	3.70E+05	1.4E+04	0	
 1248	M1	36	35	35	5.18E+05	1.5E+04	0	
 	M1	37	36	49	7.29E+05	1.5E+04	0	
 1636	M1	38	37	104	1.52E+06	1.5E+04	1	
2226	M1	39	38	13	2.06E+05	1 6E+04	0	
1861	M1	40	39	27	4 14E+05	1 5E+04	0	
1773	M1	41	40	149	2 23E+06	1.5E+04	2	
2537	M1	42	41	40	6.04F+05	1.5E+04	0	
2824	M1	/3	42	26	4.02E+05	1.5E+04	0	
 2024	M1	44	13	20	4.31E+05	1.5E+04	0	1 CE stuck
2472	M1	44	43	55	9.25E+05	1.5E+04	0	I CE Stuck
2343	M1	45	44	11	1.67E+05	1.5E+04	0	
3204	MI	40	45	22	5.04E+05	1.5E+04	0	1 CE stud
2323		47	40	20	3.04E+03	1.5E+04	0	1 CE SLUCK
2522	MI	48	4/	32	4.95E+05	1.5E+04	0	
2366	MI	49	48	9	1.47E+05	1.6E+04	0	2 CE stuck
2130	M1	50	49	76	1.17E+06	1.5E+04	0	2 CE stuck, DF

Tab. 44: Run Table of Micron 16-Gbit DUT M316, Kr, LET = 32.1, 32 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
	0	M1	51	50	32	4.69E+05	1.5E+04	0		
	348	M1	52	51	12	1.86E+05	1.6E+04	0		
	332	M1	53	52	45	6.56E+05	1.5E+04	0		

607	M1	54	53	14	2.12E+05	1.5E+04	0	DF

Tab. 45: Run Table of Micron 16-Gbit DUT M317, Kr, LET = 32.1, 32 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
	0	M1	55	54	37	6.01E+05	1.6E+04	0		persistent BE, PC-
	433	M1	56	55	31	4.79E+05	1.5E+04	0		
	615	M1	57	56	35	5.59E+05	1.6E+04	0		
	783	M1	58	57	17	2.59E+05	1.5E+04	0		
	726	M1	59	58	91	1.45E+06	1.6E+04	1		
	1358	M1	60	59	28	4.52E+05	1.6E+04	0		erase failed, program failed, read still functional

Tab. 46: Run Table of Micron 16-Gbit DUT M318, Kr, LET = 32.1, 32 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
	0	M1	61	60	23	3.66E+05	1.6E+04	0		
	440	M1	62	61	27	4.47E+05	1.7E+04	0		
	1903	M1	63	62	132	2.18E+06	1.7E+04	2		3 stuck CE
	3892	M1	64	63	11	1.80E+05	1.6E+04	0		3 stuck CE
	3359	M1	65	64	11	1.94E+05	1.8E+04	0		3 stuck CE
	3111	M1	66	65	105	1.73E+06	1.6E+04	1		3 stuck CE
	4200	M1	67	66	20	3.25E+05	1.6E+04	0		3 stuck CE
	3678	M1	68	67	48	8.40E+05	1.8E+04	0		3 stuck CE
	3980	M1	69	68	35	5.94E+05	1.7E+04	0		BE, erase

					failed,
					program functional,
					read 0xFF

Tab. 47: Run Table of Micron 16-Gbit DUT M319, Kr, LET = 32.1, 32 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
	0	M1	70	69	52	8.67E+05	1.7E+04	0		
	892	M1	71	70	10	1.65E+05	1.7E+04	0		
	808	M1	72	71	88	1.44E+06	1.6E+04	1		
	1795	M1	73	72	9	1.45E+05	1.6E+04	0		
	1443	M1	74	73	18	3 12E+05	1 7E+04	0		
	1433	M1	75	74	13	2.06E+05	1 6E+04	0		
	1295	M1	76	75	8	1 29F+05	1.6E+04	0		
	1166	M1	70	76	11	1.29E+05	1.0E+04	0		
	1130	M1	78	70	22	3 78E±05	1.7E+04	0		
	1203	M1	70	78	26	4.48E+05	1.7E+04	0		
	1295	M1	80	70	20	4.32E+05	1.7E+04	0		
	1511	M1	00	20	51	9.02E+05	1.92+04	0		
	1311		01	00	10	0.95E+05	1.8E+04	0		
	2156	MI		81	19	3.21E+05	1.7E+04	0		continuation
	2176	M1	82	82	15	2.56E+05	1.7E+04	0		
	1992	M1	83	83	17	2.94E+05	1.7E+04	0		
	1879	M1	84	84	9	1.50E+05	1.7E+04	0		
	1652	M1	85	85	18	3.30E+05	1.8E+04	0		erase failed, program failed

Tab. 48: Run Table of Micron	16-Gbit DUT M320, Kr, L	LET = 32.1, 32 blocks tested
------------------------------	-------------------------	------------------------------

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
	0	M1	86	86	56	1.00E+06	1.8E+04	0		

687	M1	87	87	23	4.27E+05	1.9E+04	0	
710	M1	88	88	11	2.08E+05	1.9E+04	0	
596	M1	89	89	10	1.86E+05	1.9E+04	0	
552	M1	90	90	35	6.56E+05	1.9E+04	0	
1345	M1	91	91	62	1.15E+06	1.9E+04	0	1 stuck CE
2367	M1	92	92	23	4.21E+05	1.8E+04	0	2 stuck CE, erase failed, program
								failed

Tab. 49: Run Table of Micron 16-Gbit DUT M321, Kr, LET = 32.1, 32 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
	1	M1	93	93	24	4.65E+05	1.9E+04	0		
	969	M1	94	94	68	3.06E+05	4.5E+03	1		2 stuck CE, beam error
	506	M1	95	95	41	8.24E+05	2.0E+04	0		DF

Tab. 50: Run Table of Micron 16-Gbit DUT M322, Kr, LET = 32.1, 32 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
	0	M1	96	96	9	1.79E+05	2.0E+04	0		
	213	M1	97	97	18	3.70E+05	2.1E+04	0		erase failed, program failed, read ok
		R	97.a				_			

Tab. 51: Run Table of Micron 16-Gbit DUT M323, Kr, LET = 32.1, 32 blocks tested

paration bits IDA RADEF	Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
-------------------------------	------------------	---------------	------	------------	--------------	------	---------	------	-------	--------	---------

0	M3b	98	98	103	1.00E+05	9.7E+02	1	1220	few 2be, no SEFI, 222 stuck bits, all 1 be
	R	99				-		206	@5 min
	R	100				_		197	@10 min

Tab. 52: Run Table of Micron 16-Gbit DUT M324, Kr, LET = 32.1, 64 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
	0	M2	101	99	192	1.87E+05	9.7E+02			
		R	101.a				-		295261	
		R	101.b				-		295162	@5 min
		R	101.c				-		295010	@10 min
		R	101.d				-		294781	@46 min
		R	101.e				-		1867	PC, 2be

Tab. 53: Run Table of Micron 16-Gbit DUT M325, Kr, LET = 32.1, 64 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
	247	M1	102	100	44	9.23E+05	2.1E+04			
	304	M1	103	101	18	4.12E+05	2.3E+04			
	286	M1	104	102	9	2.01E+05	2.2E+04			
	217	M1	105	103	39	8.46E+05	2.2E+04			
	328	M1	106	104	16	3.34E+05	2.1E+04			
	269	M1	107	105	24	5.31E+05	2.2E+04			
	280	M1	108	106	50	1.12E+06	2.2E+04			
	391	M1	109	107	40	8 69E+05	2.2E+04			
	375	M1	110	108	7	1 64E+05	2.3E+04			
	267	M1	111	109	72	1.54E+06	2.1E+04			

450	M1	112	110	75	1 58F+06	2 1F+04		
5.0	M	112	111	()	1.35E+06	2.10.04		
300	IVI I	115	111	04	1.55E+06	2.1E+04		
587	M1	114	112	18	3.79E+05	2.1E+04		
419	M1	115	113	45	9.75E+05	2.2E+04		
446	M1	116	114	70	1.55E+06	2.2E+04		
576	M1	117	115	38	9.62E+05	2.5E+04		
548	M1	118	116	78	1.69E+06	2.2E+04		
622	M1	119	117	17	3.58E+05	2.1E+04		
472	M1	120	118	26	5.63E+05	2.2E+04		
417	M1	121	119	32	7.71E+05	2.4E+04		
441	M1	122	120	46	1.05E+06	2.3E+04		
495	M1	123	121	9	1.86E+05	2.1E+04		
350	M1	124	122	18	3.95E+05	2.2E+04		
318	M1	125	123	24	5.14E+05	2.1E+04		
316	M1	126	124	127	2.79E+06	2.2E+04		
649	M1	127	125	59	1.34E+06	2.3E+04		
675	M1	128	126	49	1.07E+06	2.2E+04		
628	M1	129	127	20	4.36E+05	2.2E+04		
474	M1	130	128	6	1.36E+05	2.3E+04		
327	M1	131	129	91	2.16E+06	2.4E+04		
652	M1	132	130	55	1.25E+06	2.3E+04		
629	M1	133	131	9	1.94E+05	2.2E+04		
435	M1	134	132	10	2.30E+05	2.3E+04		
348	M1	135	133	15	3.54E+05	2.4E+04		
324	M1	136	134	7	1.46E+05	2.1E+04		
 252	M1	137	135	12	2.48E+05	2.1E+04		
232	M1	138	136	9	1.81E+05	2.0E+04		
218	M1	139	137	59	1.30E+06	2.2E+04		
408	M1	140	138	41	8.67E+05	2.1E+04		

368	M1	141	139	21	4.40E+05	2.1E+04		
318	M1	142	140	22	4.62E+05	2.1E+04		
286	M1	143	141	26	5 81E+05	2.2E+04		
347	M1	144	142	5	1.05E+05	2.1E+04		
246	M1	1/15	1/12	91	1.05E+05	2.1E+01		
521	M1	146	144	30	6 57E+05	2.2E+04		
441	M1	147	145	111	2 38E+06	2.2E+01		
677	M1	148	146	15	3 18E+05	2.1E+04		
492	M1	149	147	26	5.63E+05	2.12+01		
442	M1	150	148	6	1 41E+05	2.22+01		
319	M1	151	149	16	3 86E+05	2.4E+04		
309	M1	152	150	17	3 53E+05	2.1E+04		
293	M1	153	151	19	3.76E+05	2.0E+04		
270	M1	154	152	42	9.30E+05	2.2E+04		
387	M1	155	153	33	7.82E+05	2.4E+04		
394	M1	156	154	24	5.21E+05	2.2E+04		

Tab. 54: Run Table of Micron 16-Gbit DUT M325, Fe, LET = 18.5, 32 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
2Foil		M1	157	155	38	8.17E+05	2.2E+04			
	966	M1	158	156	50	1.07E+06	2.1E+04			
	1790	M1	159	157	15	3.27E+05	2.2E+04			
		M1	160	158	30	6.56E+05	2.2E+04			no stuck bit re- cording from now, id+, program failed, DF

Tab. 55: Run Table of Micron 16-Gbit DUT M326, Fe, LET = 18.5, 32 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
2Foil		M1	161	159	26	5.75E+05	2.2E+04			ID incom- plete, DF

Tab. 56: Run Table of Micron 16-Gbit DUT M327, Fe, LET = 18.5, 32 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
2Foil		M1	162	160	42	9.44E+05	2.2E+04			CS pc-4
		M1	163	161	31	6.89E+05	2.2E+04			perm. CE
		M1	164	162	9	2.14E+05	2.4E+04			
		M1	165	163	16	3.75E+05	2.3E+04			operating error
		M1	166	164	15	3.64E+05	2.4E+04			
		M1	167	165	43	1.07E+06	2.5E+04			
		M1	168	166	9	2.03E+05	2.3E+04			
		M1	169	167	35	9.19E+05	2.6E+04			
		M1	170	168	22	5.23E+05	2.4E+04			
		M1	171	169	16	3.97E+05	2.5E+04			erase failed, program failed

Tab. 57: Run Table of Micron 16-Gbit DUT M328, Fe, LET = 18.5, 32 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
1Foil		M1	172	170	58	1.40E+06	2.4E+04			
		M1	173	171	27	6.51E+05	2.4E+04			
		M1	174	172	45	1.08E+06	2.4E+04			
		M1	175	173	7	1.72E+05	2.5E+04			operating error
		M1	176	174	23	5.63E+05	2.4E+04			

	M1	177	175	7	1.70E+05	2.4E+04		
	M1	178	176	61	1.40E+06	2.3E+04		
	M1	179	177	25	6.12E+05	2.4E+04		
	M1	180	178	15	3.65E+05	2.4E+04		
	M1	181	179	15	3.60E+05	2.4E+04		
1101	M1	182	180	40	9.63E+05	2.4E+04		
	M1	183	181	16	4.20E+05	2.6E+04		
	M1	184	182	15	3.82E+05	2.5E+04		
	M1	185	183	20	4.89E+05	2.4E+04		
	M1	186	184	11	2.44E+05	2.2E+04		
	M1	187	185	95	2.34E+06	2.5E+04		
	M1	188	186	59	1.48E+06	2.5E+04		
	M1	189	187	62	1.48E+06	2.4E+04		
	M1	190	188	37	8.74E+05	2.4E+04		
	M1	191	189	57	1.37E+06	2.4E+04		program failed
1864	M1	192	190	10	2.37E+05	2.4E+04		ID incom- plete, DF

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
1Foil		M1	193	191	11	2.79E+05	2.5E+04			
		M1	194	192	97	2.34E+06	2.4E+04			
		M1	195	193	25	6.09E+05	2.4E+04			
		M1	196	194	8	1.97E+05	2.5E+04			
		M1	197	195	29	6 70E+05	2.3E+04			
		M1	108	196	7	1.82E±05	2.6E±04			
		M1	100	107	12	1.02E+05	2.01104			
		M1	200	197	17	3.89E+05	2.3E+04			

	M1	201	199	42	1.00E+06	2.4E+04		
	M1	202	200	41	9.59E+05	2.3E+04		
497	M1	203	201	9	2.08E+05	2.3E+04		
	M1	204	202	108	2.57E+06	2.4E+04		prog-
	M1	205	203	109	6.94E+05	6.4E+03		
	M1	206	204	73	1.77E+06	2.4E+04		
	M1	207	205	63	1.56E+06	2.5E+04		
	M1	208	206	46	1.11E+06	2.4E+04		
	M1	209	207	36	9.39E+05	2.6E+04		
	M1	210	208	111	2.77E+06	2.5E+04		
	M1	211	209	20	4.78E+05	2.4E+04		
	M1	212	210	77	1.91E+06	2.5E+04		
691	M1	213	211	14	3.41E+05	2.4E+04		
	M1	214	212	33	8.26E+05	2.5E+04		
	M1	215	213	5	1.27E+05	2.5E+04		
	M1	216	214	25	6.46E+05	2.6E+04		
	M1	217	215	10	2.53E+05	2.5E+04		
	M1	218	216	10	2.58E+05	2.6E+04		
	M1	219	217	6	1.29E+05	2.2E+04		
	M1	220	218	19	4.88E+05	2.6E+04		
	M1	221	219	8	2.14E+05	2.7E+04		
	M1	222	220	7	1.78E+05	2.5E+04		
259	M1	223	221	13	3.36E+05	2.6E+04		
	M1	224	222	33	8.51E+05	2.6E+04		
	M1	225	223	8	2.13E+05	2.7E+04		
	M1	226	224	57	1.50E+06	2.6E+04		
	M1	227	225	19	5.21E+05	2.7E+04		
	M1	228	226	10	2.56E+05	2.6E+04		
	M1	229	227	8	2.57E+05	3.2E+04		

	M1	230	228	21	6.47E+05	3.1E+04		
	M1	231				-		Tuesday
	M1	232	229	24	5.10E+05	2.1E+04		
	M1	233	230	25	5.32E+05	2.1E+04		
	M1	234	231	36	8.09E+05	2.2E+04		
	M1	235	232	15	3.42E+05	2.3E+04		
	M1	236	233	30	7.72E+05	2.6E+04		
	M1	237	234	18	5.95E+05	3.3E+04		
	M1	238	235	84	2.06E+06	2.5E+04		
	M1	239	236	23	5.19E+05	2.3E+04		
	M1	240	237	10	2.31E+05	2.3E+04		
	M1	241	238	36	8.62E+05	2.4E+04		
	M1	242	239	17	3.96E+05	2.3E+04		RADEF fluence "Inf"
	M1	243	240	17	3.97E+05	2.3E+04		
	M1	244	241	7	1.90E+05	2.7E+04		
	M1	245	242	69	1.68E+06	2.4E+04		
	M1	246	243	8	1.84E+05	2.3E+04		
	M1	247	244	10	2.41E+05	2.4E+04		
	M1	248	245	19	4.67E+05	2.5E+04		
	M1	249	246	38	1.06E+06	2.8E+04		
	M1	250	247	8	2.05E+05	2.6E+04		
	M1	251	248	26	7.67E+05	3.0E+04		
	M1	252	249	42	1.20E+06	2.9E+04		
	M1	253	250	23	5.22E+05	2.3E+04		
	M1	254	251	10	2.70E+05	2.7E+04		
	M1	255	252	37	1.06E+06	2.9E+04		
	M1	256	253	41	1.11E+06	2.7E+04		
	M1	257	254	20	5.61E+05	2.8E+04		

	M1	258	255	20	5.37E+05	2.7E+04		
	M1	259	256	32	8.86E+05	2.8E+04		
	M1	260	257	9	2.58E+05	2.9E+04		
	M1	261	258	36	1.11E+06	3.1E+04		
	 M1	262	259	5	1.63E+05	3.3E+04		
2Foil	 M1	263	260	58	1.77E+06	3.1E+04		
	M1	264	261	6	1.80E+05	3.0E+04		
	 M1	265	262	11	3.28E+05	3.0E+04		
	 M1	266	263	38	1.02E+06	2.7E+04		
	M1	267	264	63	1.13E+06	1.8E+04		
	M1	268	265	43	7.36E+05	1.7E+04		
	M1	269	266	61	1.20E+06	2.0E+04		DF

Tab. 59: Run Table of Micron 16-Gbit DUT M330, Fe, LET = 18.5, 32 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
1Foil		M1	270	267	128	2.34E+06	1.8E+04			
		M1	271	268	19	3.61E+05	1.9E+04			
		M1	272	269	7	1.18E+05	1.7E+04			
		M1	273	270	9	1.50E+05	1.7E+04			
		M1	274	271	28	4.69E+05	1.7E+04			
		M1	275	272	15	2.30E+05	1.5E+04			
		M1	276	273	10	1.89E+05	1.9E+04			
		M1	277	274	14	2.34E+05	1.7E+04			
		M1	278	275	26	3.01E+05	1.2E+04			
		M1	279	276	51	5.75E+05	1.1E+04			
		M1	280				-			operating error
		M1	281				-			operating error

	M1	282	277	10	1.43E+05	1.4E+04		DF
	M1	283				-		
	M1	284				-		

Tab. 60: Run Table of Micron 16-Gbit DUT M331, Fe, LET = 18.5, 32 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
		M1	285	278	236	3.05E+06	1.3E+04			
		M1	286	279	8	1.14E+05	1.4E+04			
		M1	287	280	112	1.33E+06	1.2E+04			
		M1	288	281	77	1.49E+06	1.9E+04			
		M1		282	46	9.26E+05	2.0E+04			
		M1	289	283	6	1.30E+05	2.2E+04			
		M1	290	284	10	2.81E+05	2.8E+04			
		M1	291	285	128	2.91E+06	2.3E+04			
		M1	292	286	14	3.54E+05	2.5E+04			
		M1	293	287	74	1.68E+06	2.3E+04			
		M1	294	288	63	1.73E+06	2.7E+04			
		M1	295	289	64	1.70E+06	2.7E+04			
		M1	296	290	14	3.21E+05	2.3E+04			
		M1	297	291	12	2.83E+05	2.4E+04			
		M1	298	292	12	2.82E+05	2.4E+04			
		M1	299	293	67	1.57E+06	2.3E+04			
		M1	300	294	10	2.82E+05	2.8E+04			
		M1	301	295	22	5.84E+05	2.7E+04			
		M1	302	296	28	5.31E+05	1.9E+04			
		M1	303	297	17	3.88E+05	2.3E+04			
		M1	304	298	27	6.58E+05	2.4E+04			
		M1	305	299	70	1.48E+06	2.1E+04			

	M1	306	300	41	9.58E+05	2.3E+04		
	M1	307	301	17	4.37E+05	2.6E+04		
	M1	308	302	67	1.64E+06	2.4E+04		
	M1	309	303	96	2.01E+06	2.1E+04		
	M1	310	304	28	7.42E+05	2.7E+04		
	M1	311	305	33	7.25E+05	2.2E+04		
	M1	312	306	29	7.16E+05	2.5E+04		
	M1	313	307	32	6.59E+05	2.1E+04		
	M1	314	308	7	1.43E+05	2.0E+04		
	M1	315	309	18	3.48E+05	1.9E+04		
	M1	316	310	27	5.22E+05	1.9E+04		
	M1	317	311	16	3.54E+05	2.2E+04		
	M1	318	312	83	1.69E+06	2.0E+04		
	M1	319	313	15	3.93E+05	2.6E+04		
	M1	320	314	31	7.84E+05	2.5E+04		
	M1	321	315	56	1.34E+06	2.4E+04		
	M1	322	316	70	2.07E+06	3.0E+04		
	M1	323	317	14	3.05E+05	2.2E+04		DF

Tab. 61: Run Table of Micron 16-Gbit DUT M332, Fe, LET = 18.5, 32 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
-		M3b	324	318	242	1.00E+05	4.1E+02		748	no SEFIs
		BG							61	
		R	325				-		54	@5min
		R	326				-		56	@10min
		R	327				-		52	@15min
		R	328				-		53	@20min
		R	329				-		52	@25min

	R	330		-	49	@30min
	R	331		-	44	after lunch

Tab. 62: Run Table of Micron 16-Gbit DUT M333, Fe, LET = 18.5, 64 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
		M1	332	319	48	7.82E+04	1.6E+03			
		M1	333	320	35	6.52E+04	1.9E+03			program failed, erase functional, read 0xFF
		M1	334				-			

Tab. 63: Run Table of Micron 16-Gbit DUT M334, Xe, LET = 60, 32 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
		M1	335	321	158	3.72E+04	2.4E+02			
		M1	336	322	524	1.20E+05	2.3E+02			program failed

Tab. 64: Run Table of Micron 16-Gbit DUT M335, Xe, LET = 60, 32 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
		M1	337	323	1373	3.20E+05	2.3E+02			program failed, read 0xFF

Tab. 65: Run Table of Micron 16-Gbit DUT M336, Xe, LET = 60, 32 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
		M1	338	324	302	7.19E+04	2.4E+02			program failed

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
		M 1	339	325	423	9.39E+04	2.2E+02			
		M1	340				-			program failed, erase failed

Tab. 67: Run Table of Micron 16-Gbit DUT M338, Xe, LET = 60, 32 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
		M1	341				-			
		M1	342				-			without beam
		M3b	343	326	134	4.02E+04	3.0E+02		1860	1ce
		BG	-				-		1262	1ce
		R	344				-		1252	@5min, 1ce
		R	345				-		1565	@10min, 1ce
		R	346				-		2010	@15min, 1ce
		R	347				-		1576	@20min, 1ce
		R	348				-		1563	@25min,1ce
		R	349				-		1451	@30min,1ce

Tab. 68: Run Table of Micron 16-Gbit DUT M339, Xe, LET = 60, 64 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
		M1	350	327	3	8.45E+04	2.8E+04			operating error
		M1		328	192	5.91E+06	3.1E+04			still IDA 350,

								increase flux
	M1	351	329	1067	1.00E+08	9.4E+04	17993	no SEFIs

Tab. 69: Run Table of Micron 16-Gbit DUT M340, N, LET = 1.8, 32 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
		M3b	352	330	110	1.02E+07	9.3E+04		4641	
		BG					-		0	
		M3b	353	331	994	1.00E+08	1.0E+05		46396	
		BG	354				-		1	

Tab. 70: Run Table of Micron 16-Gbit DUT M341, N, LET = 1.8, 64 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
-		M1	355	332	83	3.74E+05	4.5E+03			
		M1	356	333	107	4.75E+05	4.4E+03			
		M1	357	334	18	7.12E+04	4.0E+03			
3Foil		M1	358	335	181	7.69E+05	4.2E+03			prog-
		M1	359	336	98	4.19E+05	4.3E+03			1 0
		M1	360	337	181	8.66E+05	4.8E+03			
		M1	361	338	269	1 46E+06	5.4E+03			
		M1	362	339	143	1.43E+06	1 0E+04			
		M1	363	340	94	9 59E+05	1 0E+04			
		M1	364	341	168	1 75E+06	1.0E+04			
		M1	365	342	100	1.75E+06	1.0E+04			
		M1	366	3/3	32	3 60E 105	1.1E+04			
		M1	267	244	107	2.11E+02	2.0E+04			nn og
			269	245	107	2.11E+00	2.0E+04			prog-
		MI	368	345	63	1.28E+06	2.0E+04			
		M1	369	346	37	7.92E+05	2.1E+04			

	M1	370	347	28	5.69E+05	2.0E+04		
	M1	371	348	21	4.25E+05	2.0E+04		
	M1	372	349	118	2.55E+06	2.2E+04		
	M1	373	350	31	6.31E+05	2.0E+04		erase-
	M1	374	351	58	1.20E+06	2.1E+04		
	M1	375	352	56	1.11E+06	2.0E+04		
	M1	376	353	36	7.31E+05	2.0E+04		
	M1	377	354	14	3.10E+05	2.2E+04		
	M1	378	355	113	2.61E+06	2.3E+04		
	M1	379	356	22	9.35E+05	4.3E+04		
	M1	380	357	44	1.85E+06	4.2E+04		
	M1	381	358	12	5.03E+05	4.2E+04		
	M1	382	359	8	2.95E+05	3.7E+04		
	M1	383	360	21	8.23E+05	3.9E+04		
	M1	384	361	31	1.29E+06	4.2E+04		
	M1	385	362	105	4.35E+06	4.1E+04		
	M1	386	363	11	4.33E+05	3.9E+04		
	M1	387	364	122	5.19E+06	4.3E+04		
	M1	388	365	9	3.67E+05	4.1E+04		
	M1	389	366	9	3.82E+05	4.2E+04		
	M1	390	367	24	1.04E+06	4.3E+04		
	M1	391	368	32	1.37E+06	4.3E+04		
	M1	392	369	35	1.41E+06	4.0E+04		
	M1	393	370	57	2.36E+06	4.1E+04		DF

Tab. 71: Run Table of Micron 16-Gbit DUT M340, Ar, LET = 10.1, 32 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
3Foil		M1	394	371	11	4.81E+05	4.4E+04			prog-

	M1	395	372	17	7.29E+05	4.3E+04		
	M1	396	373	75	3.00E+06	4.0E+04		
	M1	397	374	15	6.29E+05	4.2E+04		
	M1	398	375	39	1.62E+06	4.2E+04		
	M1	399	376	15	5.94E+05	4.0E+04		
	M1	400	377	33	1.39E+06	4.2E+04		
	M1	401	378	7	2.60E+05	3.7E+04		
	M1	402	379	9	4.28E+05	4.8E+04		
	M1	403	380	26	1.12E+06	4.3E+04		
	M1	404	381	7	3.02E+05	4.3E+04		
	M1	405	382	16	6.86E+05	4.3E+04		
	M1	406	383	7	2.91E+05	4.2E+04		
	M1	407	384	47	2.09E+06	4.4E+04		
	M1	408	385	104	5.14E+06	4.9E+04		
	M1	409	386	68	2.47E+06	3.6E+04		
	M1	410	387	25	8.14E+05	3.3E+04		
	M1	411	388	20	6.74E+05	3.4E+04		
	M1	412	389	44	1.50E+06	3.4E+04		
	M1	413	390	11	3.85E+05	3.5E+04		
	M1	414	391	30	1.09E+06	3.6E+04		
	M1	415	392	44	1.55E+06	3.5E+04		
	M1	416	393	7	2.68E+05	3.8E+04		
	M1	417	394	29	9.81E+05	3.4E+04		
	M1	418	395	20	7.38E+05	3.7E+04		
	M1	419	396	28	9.51E+05	3.4E+04		
	M1	420	397	40	1.53E+06	3.8E+04		
	M1	421	398	6	2.20E+05	3.7E+04		
	M1	422	399	11	4.47E+05	4.1E+04		
	M1	423	400	45	1.71E+06	3.8E+04		

	M1	424	401	20	7.78E+05	3.9E+04		
	M1	425	402	15	5.42E+05	3.6E+04		
	M1	426	403	11	4.13E+05	3.8E+04		
	M1	427	404	7	2.60E+05	3.7E+04		
	M1	428	405	164	6.38E+06	3.9E+04		
	M1	429	406	13	4.61E+05	3.5E+04		
	M1	430	407	18	6.75E+05	3.8E+04		
	M1	431	408	12	5.01E+05	4.2E+04		
	M1	432	409	24	8.90E+05	3.7E+04		
	M1	434	410	37	1.44E+06	3.9E+04		
	M1	435	411	10	3.69E+05	3.7E+04		
	M1	436	412	81	3.13E+06	3.9E+04		
	M1	437	413	23	9.20E+05	4.0E+04		
	M1	438	414	23	8.37E+05	3.6E+04		
	M1	439	415	9	3.84E+05	4.3E+04		
	M1	440	416	19	7.45E+05	3.9E+04		
	M1	441	417	19	7.64E+05	4.0E+04		
	M1	442	418	14	5.83E+05	4.2E+04		
	M1	443	419	43	1.82E+06	4.2E+04		
	M1	444	420	31	1.10E+06	3.5E+04		
	M1	445	421	15	5.28E+05	3.5E+04		
	M1	446	422	30	1.15E+06	3.8E+04		
	M1	447	423	36	1.47E+06	4.1E+04		
	M1	448	424	9	3.27E+05	3.6E+04		
	M1	449	425	29	1.17E+06	4.0E+04		
	M1	450		0	0.00E+00	-		DF
	M1	451				-		

Tab. 72: Run Table of Micron 16-Gbit DUT M342, Ar, LET = 10.1, 32 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
-		M3b	452	426	104	1.01E+05	9.7E+02		401	
		BG					-		4	
		M3b	453	427	467	1.00E+07	2.1E+04		36497	
		BG					_		289	
		R	453.a				-		252	@5min
		R	453.b				-		234	@10min
		R	453.c				-		227	@15min
		R	453.d				-		210	@20min
		R	453.e				-		199	@25min
		R	453.f				-		189	@30min

Tab. 73: Run Table of Micron 16-Gbit DUT M343, Ar, LET = 10.1, 64 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
-		M3b	454	428	484	1.00E+07	2.1E+04		14290	
		BG					-		0	
		M3b	455	429	354	1.00E+08	2.8E+05		140102	
		BG					-		30	
		R	455.a				-		26	@5min
		R	455.b				-		25	@10min
		R	455.c				-		23	@15min
		R	455.d				-		23	@20min
		R	455.e				-		24	@25min
		R	455.f				-		23	@30min

Tab. 74: Run Table of Micron 16-Gbit DUT M344, Ne, LET = 3.6, 64 blocks tested

IIC- Stuck Moue Kun Kun Inne Fluence Flux Loops Litois Kenai	Pre-	stuck	Mode	Run	Run	Time	Fluence	Flux	Loops	Errors	Remarks
--	------	-------	------	-----	-----	------	---------	------	-------	--------	---------

-
paration	bits		IDA	RADEF					
		M2	456	430	65	2.00E+07	3.1E+05	>>	
		R	456.a				-	26339	PC
		M2	457	431	61	2.05E+07	3.4E+05	>>	
		R	457.a				-		no PC
		R	457.b				-	26510	PC

Tab. 75: Run Table of Micron 16-Gbit DUT M345, Ne, LET = 3.6, 64 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
	133	R	458							

Tab. 76: Run Table of Micron 16-Gbit DUT M324, Kr, LET = 32.1, 64 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
	30	R	459							

Tab. 77: Run Table of Micron 16-Gbit DUT M333, Fe, LET = 18.5, 64 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
	1175	R	460							

Tab. 78: Run Table of Micron 16-Gbit DUT M339, Xe, LET = 60, 64 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
	93	R	461							

Tab. 79: Run Table of Micron 16-Gbit DUT M343, Ar, LET = 10.1, 64 blocks tested

Pre- paration	stuck bits	Mode	Run IDA	Run RADEF	Time	Fluence	Flux	Loops	Errors	Remarks
	13	R	462							

Tab. 80: Run Table of Micron 16-Gbit DUT M344, Ne, LET = 3.6, 64 blocks tested

IDA

9 Package pictures

Fig. 39: Micron MT29F16G08ABACAWP-IT:C NAND-Flash

Fig. 40: Micron MT29F16G08ABACAWP-IT:C NAND-Flash

Fig. 41: Micron MT29F32G08ABAAAWP-IT:A NAND-Flash

Fig. 42: Micron MT29F8G08AAA-WP-A

Fig. 43: Samsung K9F8G08U0M-PCB0 NAND-Flash

Fig. 44: Samsung K9WBG08U1M-PIB0 NAND-Flash

Fig. 45: Samsung K9WBG08U1M-PIB0 NAND-Flash

Fig. 46: Samsung K9WBG08U1M-PIB0 NAND-Flash

10 References

- [1] A. Virtanen et al., "Upgrades for the RADEF Facility", 2007 IEEE Radiation Effects Data Workshop Record, pp. 38-41.
- [2] H. Kettunen, private communication, May 2012
- [3] Micron "M72A_16Gb_32Gb_64Gb_AsyncSync_NAND.pdf", Rev. F 8/11 EN
- [4] Micron "M73A_32Gb_64Gb_128Gb_256Gb_AsyncSync_NAND.pdf", Rev. F 6/11 EN
- [5] F. Irom et al., "Radiation Tests of Highly Scaled, High-Density, Commercial, Non volatile NAND Flash Memories Update 2011"
- [6] F. Irom, et al., "Catastrophic Failure in Highly Scaled Commercial NAND Flash Memories", IEEE Transactions on Nuclear Science, vol. 57, no. 1, pp. 266-271, 2010.
- [7] T.R. Oldham et al., "Investigation of Current Spike Phenomena during Heavy Ion Irradiation of NAND Flash Memories", 20th Annual Single Event Effects Symposium, San Diego, April 2011
- [8] H. Schmidt, et al., "Annealing of Static Data Errors in NAND-Flash Memories", RADECS 2007, PC-2