

TRAD, Tests & Radiations

Experimental Characterization and Simulation of Electron-induced SEU in 45nm CMOS Technology

<u>A. Samaras</u>, P. Pourrouquet, N. Sukhaseum, L. Gouyet, B. Vandevelde, N. Chatry, R. Ecoffet, F. Bezerra and E. Lorfevre

SEU sensitivity of electronic devices under high energy electrons ?

Commercial devices potentially sensitive to primary electrons

Aim of the study

- Component selection
- Test under primary electron beam
- Monte Carlo simulation
- SEU rate calculation

The devices under test are 45nm CMOS copper process technology FPGA

Device	FPGA	
Function	SRAM based FPGA	
Technology	45nm	
Package	TQFP144	
Date Code	1305	
SRAM tested size	131072 x 4b	

Irradiation Facility

Radiation tests performed at NPL (National Physical Laboratory, Teddington, UK)

- Clinical Elekta Linac : standard clinical electron beam commonly used for external radiotherapy.
- Electrons energies [4MeV, 20MeV]
- Fluxes [0.5Gy/min, 5Gy/min]
- Maximum irradiation area : 250 x 250 mm²

- \Rightarrow Dose Rate Peak = 1,3.10⁴ rad/s
- ⇒ Small enough to perform SEE tests without inducing Flash events

- The test hardware is designed in order to perform an SEU characterization of the FPGA internal embedded RAM
- To increase the SEU sensitivity, the FPGA internal power supply was reduced :

< minimum data retention voltage

Vcc = 0.672V

high enough to keep the device functional

Radiation Test Results

- No SEFI
- No SEL
- No loss of functionality and SEU susceptibility dependence observed up to the final TID level

7

No Flux incidence on SEU susceptibility

Device cut perpendicularly to the die surface

R_&T

cnes

Technological cross sections performed on FPGA.

Composition and thickness of the back end of line (BEOL) layers

Monte-Carlo Simulation

GEANT4 Monte Carlo simulation

Hypothesis:

- Charge deposition = ionizing energy loss of :
 - primary electrons,
 - secondary electrons,
 - recoil atoms
- Primary electrons tracked one by one
 - ⇒ Detected events due to a single primary particle
- Temporal condition = 10ps
 - Collection of charges from several secondary electrons generated in a same time lapse

Simulation results : SEU = combined energy deposition of primary and secondary electrons

Simulated cross section depend on

Critical charge Sensitive area Thickness

Critical charge = 0.4fc Sensitive area = 0.4 µm² Thickness = 0.05µm

representative of the device and test condition (low bias voltage)

SEU rate calculation for JUICE mission

SEU rate calculation for JUICE mission in standard supply condition

Hypothesis:

- 15 mm aluminum plate = shielding spacecraft estimation
- Two isotropic electron spectra have been considered:
 - Worst Case flux, (worst case mission location),
 - Average flux over the scientific phase of the JUICE mission

SEU rate calculation for JUICE mission

Monte Carlo Simulation:

- Sensitive area = 0.4µm²
- Thickness = 0.05µm
- Critical charge = 0.5 fC
 - standard bias voltage

ITRS roadmap 45nm SRAM technology in standard condition

	Worst case flux	Average flux
SEU rate per device per day Monte Carlo	19.5	2.58E-01

SEU rate calculation for JUICE mission

OMERE Software

Isotropic angular distribution of secondary electrons SEU electron rate determined using the same method as for proton rate calculation

		Worst case flux	Average flux
SEU rate per device per day OMERE	case1	1.07E-01	2.26E-03
	case2	3.8E-01	7.38E-03
	case3	1.34	2.43E-02

⇒ SEU Test under high energy electron beam ⇒NPL facility limited at 20MeV

⇒ Simulations support this conclusion ⇒ SEU are induced by primary and secondary

electrons

⇒ SEU rate for the entire JUICE mission

- Radiation Test :
 - New irradiation facility ⇒ E > 20MeV
- Monte Carlo Simulation :
 - Collaboration with device designers ⇒ device description
- Radiation test and Monte Carlo simulation combination

- Radiation test ⇒ Simulation parameters
- Monte Carlo simulation ⇒ saturation cross section

•NSREC 2014 & TNS publication :

A. Samaras, P Pourrouquet, N. Sukhaseum, L. Gouyet ;B. Vandevelde, N. Chatry, R. Ecoffet, F. Bezerra, E. Lorfevre
« Experimental Characterization and Simulation of Electron-Induced SEU in 45-nm CMOS Technology »,
IEEE Trans. Nucl. Sci., vol. 61 no. 6, p 3055 - 3060, Dec. 2014

Experimental Characterization and Simulation of Electron-induced SEU in 45nm CMOS Technology

QUESTIONS

