

R&T PROTON DIRECT IONIZATION

A Calculation Method for Proton Direct Ionization Induced SEU Rate from Experimental Data: Application to a Commercial 45nm FPGA

> Nicolas Sukhaseum (TRAD) Anne Samaras (TRAD) Lionel Gouyet (TRAD) Françoise Bezerra (CNES)

TRAD, Tests & Radiations

Introduction

- Electronic device integration scale decrease → SEU sensitivity increase
- Technology nodes 90nm and lower (65nm, 45nm, 28nm...)
 - Necessary charge to upset a device low enough to be sensitive to proton direct ionization

Proton caused SEU

- Recoil atom
 - Indirect event due to the charge generated by a secondary ion
- Direct ionization
 - Charge generated by the incident proton leads to an event
- The aim of this study was to propose a test method and a rate calculation for the proton direct ionization sensitivity

2

Introduction

Maximum LET at end of path

 Significant deposited charge over a small distance in the last silicon microns

Proton direct ionization may occur when

- Maximum generated charge in the device active erea
 - Incident proton stops in the active area
- Device sensitive enough compared to the generated charge
 - Low SEU critical charge

Experimental Characterization

Need for an SEU sensitive device

Small SEU critical charge

Chances to see proton direct ionization

Important integration scale technology

- 45nm CMOS SRAM-based FPGA embedded BRAM
- Two tested references of the same technology (different device size)
- Same date code for all the samples of one reference

Experimental Characterization

- Test bed developped by TRAD for low energy proton beam experiments
 - SEU count
 - Stuck bit detection
 - SEFI management
 - SEL protection
- Irradiations performed at CNA (Centro Nacional de Aceleradores, Sevilla, Spain)
 - 3MV Tandem accelerator
 - Incident proton energy 750keV to 6MeV
 - Tilted experiments 0° to 60°
 - <u>Effective penetration depth</u> <u>variation</u>

Test configuration

CNA proton facility

displayed at 1.27MeV

- Cross section increase below 1.5MeV
 - Direct ionization sensitivity of the tested devices
- Irradiations at different energies and tilt angles
 - Tilted irradiations are plotted on the graph at the <u>energy</u> <u>corresponding to the same effective range</u> in silicon

- The experimental data is compiled in order to calculated a rate
- Reconstructed cross section curve at fixed energy as a function of the tilt angle
 - Based on the penetration depth value

R (2 MeV, 60°) = R (1.27 MeV, 0°) = R (1.5 MeV, 37°)

Reconstructed cross section $\sigma(\theta)$ at 1.5 MeV

- Between 1,25 and 1,5 MeV, the relative proportion of direct events decreases with respect to the indirect events increase
 - There is an energy range in which the direct and indirect ionization regimes overlap
- In order to <u>focus on direct ionization</u>, the test data is completed by a <u>calculation</u> <u>hypothesis</u>
 - The two sensitivity threshold angles appearing on the graph are used to define the direct ionization sensitive layer

Data Analysis

- Sensitive layer <u>depth</u> and <u>thickness</u> calculated with respect to the threshold angles
 - 15° and 66° in the example of DUT A at 1.5MeV
- It is assumed that an incident proton has to <u>stop in the sensitive layer</u> in order to be likely to create an event by direct ionization
 - Effective flux φ(θ) to take into account at each angle defined by the proportion of protons from the environment spectrum with a path ending in the sensitive layer
- At a tilt θ, over all the incident protons stopping in the sensitive layer, the ratio of particles leading to an event is given by the measured cross section σ(θ)

Sensitive layer calculation

Calculation methodology

Rate Calculation

SEU rate calculation

- OMERE 4.0 beta-version proton direct ionization module
- Comparison with indirect event proton rate
 - $^{\rm o}~\sigma_{sat}{=}1.10{\text{-}9cm2},~\text{E}_0{=}1{\text{,}5MeV},$ W=20 and S=1

onnées Sections Efficaces : C:\OMERI	E\sectionsEfficaces.dat		>>>
Matériau couche supérieure onnées environnement Environnement - Protons: - Fichier sec	ALUMINIUM SILICIUM DXYDE DE SILICIUM ALUMINIUM calculés à partir de la mission. steur: C:\Omere\sector.dat	Energie du proton : 1.0(0 MeV
ichier de sortie : C:\OMERE\ta	uxSeuloniDirecte.see		>>>
wuere 1	045018.0	1	

Direct ionization module window

Environment	Indirect ionization	Direct ionization
Environment	(dev-1.day-1)	(dev-1.day-1)
LEO (incl. 51.5 $^{\circ}$, alt. 400 km)	8,5.10 -4	3,3.10 -6
LEO (incl. 98°, alt. 800 km)	8,5.10 ⁻³	4,5.10 -5

SEU rates (AP8 min, ESP 80%, 1 g.cm⁻²)

• All study details given in NSREC 2014 proceedings

Paper identifier PB-5

 "A Calculation Method for Proton Direct Ionization Induced SEU Rate from Experimental Data: Application to a Commercial 45nm FPGA" (N. Sukhaseum, A. Samaras)

Perspectives

Experimental characterization

 During the tests, the tilt was performed in only one direction. A possible improvement of the experimental approach is to check that tilting along another direction would lead to the same results.

Software development

- The beta-version of OMERE developed within the framework of this study accepts as input only one cross section curve, expressed as a function of the angle, at fixed energy. The software abilities could be improved to perform the data analysis automatically from all test measurements.
- CNES R&T Direct Ionization 2015 study

