

CNES-ESA Radiation Final Presentation days, 09-10 mars 2015

PROTONS EFFECTS ON COMMERCIAL EUROPEAN LIGHT EMITTING DIODES

R-S12-MT4-138 R-S13/MT4-138

Mathieu BOUTILLIER DCT/AQ/EC

• CONTEXT

- COTS REFERENCES
- DIE MATERIAL VS WAVELENGTH
- EXPERIMENTAL CONDITIONS
- **RESULTS**
- CONCLUSION

CONTEXT (1/2)

Most of LEDs used in space equipment come from US or japanese manufacturer.

Those R&T contracts aim to assess commercial LED with regards to specific space environment, and especially radiative constraints.

Two contracts:

- RS12/MT4-138: ESA / CNES co-funded study: European Commercial LED space assessment
- RS13/MT4-138: CNES study on one enropean manufacturer identified through previsous R&T

CONTEXT (2/2)

Those R&T contracts aim to assess commercial LED with regards to specific space environment, and especially radiative constraints.

REFERENCES (1/2)

	OSRAM REFERENCES SELECTED						
R-S12/MT4-138	Reference	Technology	Wavelen (nm)	igth I _F (mA	Tota A) (al Output Power mW or mcd)	
	LH R974	AlGaAs 645		20)	71 mcd typ 0.35mW	
	SFH 4350	AlGaAs 850		100	0 23 n	nW min (70 typ)	
	SFH 464	AlGaAs	AlGaAs 660			11 mW	
	EPIGAP REFERENCES SELECTED						
	Reference	Technol	ogy Wa	velength (nm)	I _F (mA)	Total Output Power (mW or mcd)	
	EOLD-670-523	AlGaA	lS	670	20	780 mcd typ 4 mW	
	EOLD-850-525	AlGaA	s	850	100	45 mW	
	EOLD-880-525	AlGaA	s	880	100	45 mW	
	OSA-OPTOLIGHT REFERENCES SELECTED						
	Reference	Te	chnology	Wavele ngth (nm)	I _F (mA)	Total Output Power (mW or mcd)	
	OIS-170-660		AlGaAs	660	30	1.2 mW	
	OIS-170-850		AlGaAs	850	30	2 mW	
	OIS-170-880		AlGaAs	880	30	2.5 mW	
	OCL-400-GE	545 (Ga,In)N	545	20	850 mcd	
		Bl	ue chip + green			2 mW	
		р	hosphor				

CNES/ESA Radiations Final Presentation days – 9 & 10 March 2015

REFERENCES (2/2)

	OSA-OPTOLIGHT REFERENCES SELECTED						
R-S13/MT4-138	Reference	Technology	Wavele ngth (nm)	I _F (mA)	Total Output Power (mW or mcd)		
	OIS-170-660	AlGaAs	660	30	1.2 mW		
	OIS-170-850	AlGaAs	850	30	2 mW		
	OIS-170-880	AlGaAs	880	30	2.5 mW		
	OCL-400-GE545	(Ga,In)N	545	20	850 mcd		
		Blue chip + green phosphor			2 mW		
	OCL-400-MSD-X-T	AlGaInP	624	20	400 mcd 1.25mW		
Same package	OCL-400-MY-X-T	AlGaInP	589	20	400 mcd 0.5 mW		
	OCL-400-GC525	InGaN / Saphire	525	20	400 mcd 0.6 mW		
Same die Different package	OCL400-SW-XD-T	х	white	20	600 mcd 1.25 mW		
	OLS-330-GB525	InGaN *	525	20	1700 mcd		

DIE MATERIAL VS WAVELENGTH (1/2)

From violet to green: preferred material system is InGaN grown on sapphire.

Potentially covers [380 – 600nm], from GaN to InN

From green to red : AlGaInP on GaAs can also be used

ENV

Space and Atmospheric Environmen

Covers [550 - 655nm] from Al_{0,5}InP to Ga_{0,5}InP

From Red to infrared: preferred material system is Al_xGaAs grown on GaAs (x<0,45)

Covers [625 – 880nm] from AlAs to Al_{0,45}GaAs

Ccnes

DIE MATERIAL VS WAVELENGTH (2/2)

Material constraints in AlGaInP: active material has to be lattice matched on GaAs, reducing alloys composition availables

CNES/ESA Radiations Final Presentation days – 9 & 10 March 2015

Ccnes

EXPERIMENTAL CONDITIONS

• Protons radiations only (LED only affected by displacement damages)

.

- Facility: KVI
- Energy: 50 MeV
- Bias: No (pins shorted)
- Fluence: cumulative fluences
 - + Φ1 = 10¹¹ p+/cm²
 - + $\Phi 2 = 3,5 \ 10^{11} \ \text{p+/cm}^2$ (cumulated)
 - $\Phi_3 = 10^{12} \text{ p+/cm}^2 \text{ (cumulated)}$
 - $\Phi 4 = 2,5 \ 10^{12} \ \text{p+/cm}^2$ (cumulated)
- Eo measurements
 - + I-V
 - Pout @ 30mA injection current
 - Emission spectra

I KOTON KADIATION TEST FLAN TABLE							
Reference	DUT	I _F (mA)	Φ1	Φ2	Φ3	Φ4	
LH R974	1&2	30	Yes				
SFH 4350	1&2	30	Yes	Yes	Yes	Yes	
SFH 464	1&2	30	Yes	Yes	Yes		
EOLD-670-523	1&2	30	Yes	Yes			
EOLD-850-525	1	30	Yes	Yes	Yes	No	
	2					Yes	
EOLD-880-525	1	30	Yes	Yes	Yes	Yes	
	2					No	
OIS-170-660	1&2	30	Yes	Yes			
OIS-170-850	1&2	30	Yes	Yes			
OIS-170-880	1&2	30		Yes	Yes		
OCL-400-GE545	1&2	30	Yes	Yes	Yes	Yes	
OCL-400-MSD-X-T	1 & 2	20	Yes	Yes	Yes	Yes	
	3					No	
OCL-400-MY-X-T	1&2	20	Yes	Yes	Yes	Yes	
	3					No	
OCL-400-GC525	1&2&3	20	Yes	Yes	Yes	Yes	
OCL400-SW-XD-T	1&2&3	Yes	Yes	Yes	Yes	Yes	
OLS-330-GB525	1&2&3	Yes	Yes	Yes	Yes	Yes	

PROTON RADIATION TEST DI AN TADI E

RESULTS – OSRAM & EPIGAP

As expected from litterature, only P_{out} is affected by protons radiations.

For both manufacturers, red emitting LEDs are more impacted than near infrared ones.

GaAs more radiations tolerant than AIGaAs?

Space and Atmospheric Enviror

RESULTS – 660 NM

RESULTS – 850 NM

CNES/ESA Radiations Final Presentation days – 9 & 10 March 2015

Space and Atmospheric Environmen

RESULTS – 880 NM

Same trend as for 850 nm emitting LED

CNES/ESA Radiations Final Presentation days - 9 & 10 March 2015

RESULTS – OSA-OPTOLIGHT

AlGaAs: different trend as for OSRAM & Epigap: 850nm is the worst device in proton

AlGaInP: higher wavelength, more radiation tolerant

ENV

Space and Atmospheric Environmen

GaInN: : almost insensitive to protons in our fluence range of interest

CNES/ESA Radiations Final Presentation days – 9 & 10 March 2015

Ccnes

CONCLUSIONS (1/2)

We observe a very good hardness of green and white LEDs. Both are based on close technologies : phosphor converted LEDs, from blue emitting LED. This good hardness to protons may be attributed to two aspects

- Active material itself: (In)GaN presents a smaller carrier lifetime damage factor compared to other classical III-V semiconductor compound based on GaAs material system [1].
- Carrier injection mechanisms: for GaAs based LED operating current is dominated by diffusion mechanism. On the other hand in GaN based LED a different mechanism generally governs current transport: trap-assisted tunneling. In that case, the lifetime damage relationship no longer applies. This point may also explain the good robustness of those LED to displacement damages [1]

[1] A. H. Johnston, "Radiation Effects in Optoelectronic Devices" IEEE Trans. Nucl. Sci vol. 60, no3, june 2013

CONCLUSIONS (2/2)

COTS LEDs have been assessed with regards to their robustness to displacement damages. Data obtained during in this study are in accordance with other COTS review [2],

Green and white references tested present almost no degradation in their output power up to a fluence of $2.5 \times 10^{12} \text{ p+/cm}^2$ (50 MeV).

For the tested references, AlGaAs 660 nm emitting diodes are more radiations sensitive than AlGaAs NIR emitting ones.

LED made with quaternary AlGaInP active layer give promising results with degradation around 30% in output power for a fluence of 10^{12} p+/cm².

Some of the tested references are suitable for space applications from a radiations point of view

[2] J. J. Jimenez, et al, "Proton radiation effects in high power LEDs and IREDs for Optical Wireless Links for intraSatellite communications (OWLS)" RADECS 2006 workshop, Athènes (Greece), 27-29 september 2006.

Cnes