

CNES/ESA Radiation Effects Final Presentation Days 2015

Radiation Effects on Digital CMOS Image Sensors using Microlenses and Color Filters

C. Virmontois, <u>A. Toulemont</u>, G. Rolland, A. Materne C. Codreanu, C. Durnez and A. Bardoux CNES

1

E. Berdin and M. Bréart de Boisanger Airbus Defence and Space

V. Lalucaa and V. Goiffon ISAE Supaéro – Image Sensor Research Team

CONTEXT OF THE STUDY

- CMOS IMAGER ARCHITECTURES
- PROTON-INDUCED PERMANENT EFFECTS
- HEAVY ION-INDUCED SINGLE EVENT EFFECTS
- CONCLUSIONS

CONTEXT OF THE STUDY

- CMOS Image sensors reach very good performances
 - Deep submicron technology
 - Process dedicated to imaging (\rightarrow pinned photodiode)
- CIS integrate CMOS electronic functions
 - Specific architectures, ADC, Registers, state machine
- Microlenses and color filters are widely used in commercial CMOS image sensors
 - Microlenses maintain the pixel quantum efficiency to counterbalance shrinking motivations
 - Color filters give direct access to colored images
- CIS are sensitive to space radiation environment
 - Few dedicated study concern Single event effects
 - No dedicated study focused on microlenses and color filters against space radiation

DEVICE CHARACTERISTICS

Device architecture

Imagers	CIS1	CIS2	
Technology node	180 nm	90 nm	
Pixel Pitch (µm)	5.5	1.4	
Photodiode	PPD	PPD	
Pixel isolation	STI	DTI	
Epitaxial thickness (μm)	5 & 12	< 4	
Array	2048 × 2048	2592 × 1944	
Others	µlenses, color filters	µlenses	
Irradiation	50 and 150 MeV Proton / Heavy ion	60 MeV Proton / γ-rays / Heavy ion	

Cones

4

DEVICE CHARACTERISTICS

- **Color filter advantages**
- Selectable wavelength to build color image

Microlense advantages

Radiation Effects on Digital CMOS Image Sensors using Microlenses and Color Filters

6

ENVIRONMENTAL TESTS

4.74µm

- **Physical analysis**
 - Polymethylmethacrylate (PMMA)

Microlense CISX

- Multilayer polymer: layer 595 nm
- Surface 4.7 x 4.7 µm
- Thickness 1,42 µm

Microlense CIS1

- Single Layer polymer: 440 nm
- Surface 5 x 5 µm
- Thickness 0.845 µm

Coes

Solvents: 10 minutes immerse in acetone and 10 minutes in ethanol

- No physical evolution, no delamination was observed

CISX

Radiation Effects on Digital CMOS Image Sensors using Microlenses and Color Filters

RADIATION-INDUCED DOSE EFFECTS

- Radiation induced TID and DDD in CIS leading to dark current increase
 - TID induces trapped charges and interface states
 - TID effects are reduced using PPD \rightarrow SCR is recessed from oxide
 - DDD induces bulk defects in silicon
 - Main issue in CIS using PPD → Hot pixels

PROTON-INDUCED DOSE EFFECTS

- Mean dark current increase is higher than UDF prediction for CIS1
 - Proton-induced dark current is mainly attributed to DDD
 - TID effects are not negligible
 - Mean dark current increase is consistent with UDF predictions for CIS2

9 Radiation Effects on Digital CMOS Image Sensors using Microlenses and Color Filters

PROTON-INDUCED DOSE EFFECTS

- CIS1 dark current histograms after proton irradiation
 - **TID** shifts the entire pixel distribution
 - DDD induces hot pixel tail

Coes

PROTON-INDUCED DOSE EFFECTS

- CIS1 dark current histograms after proton irradiation
 - TID shifts the entire pixel distribution
 - DDD induces hot pixel tail

The degradation is mainly attributed to DDD

TID-induced dark current is not negligible

11 Radiation Effects on Digital CMOS Image Sensors using Microlenses and Color Filters

γ -RAY vs PROTON-INDUCED DOSE EFFECTS

CIS2 dark current histograms after γ-ray and proton irradiation

- TID-induced dark current is negligeable in CIS2
- DDD-induced dark current is the main degradation mechanism
 - DCS peaks are observed and vary with temperature

PROTON-INDUCED PERMANENT EFFECTS

Proton

• 50 MeV and 8.10¹¹ cm⁻² \rightarrow TID 56 krad and DDD 3100 TeV/g

Cnes

PROTON-INDUCED PERMANENT EFFECTS

Proton

• 50 MeV and 8.10¹¹ cm⁻² \rightarrow TID 56 krad and DDD 3100 TeV/g

17/03/2015

Cnes

- If you want to benefit from CMOS digital electronics
- \rightarrow You will have to deal with single event effects

17/03/2015

Cnes

The two cocktails of Université Catholique de Louvain were used to study SEE in CIS1

lons	Energie (MeV)	Max Flux (p.cm ⁻² .s ⁻¹)	LET (MeV.mg ⁻¹ .cm ⁻²)	Range (µm Si)	
UCL HIGH LET COCKTAIL (M/Q = 5)					
¹²⁴ Xe ²⁵⁺	420	1,5.10 ⁴	67,7	37	
⁸⁴ Kr ¹⁷⁺	305	1,5.10 ⁴	40,4	39	
⁴⁰ Ar ⁸⁺	151	1,5.10 ⁴	15,9	40	
²⁰ Ne ⁴⁺	78	1,5.10 ⁴	6,4	45	
¹⁵ N ³⁺	60	1,5.10 ⁴	3,3	59	
UCL HIGH RANGE COCKTAIL (M/Q = 3.3)					
⁸³ Kr ²⁵⁺	756	1,5.10 ⁴	32,6	92	
⁵⁸ Ni ¹⁸⁺	567	1,5.10 ⁴	20,4	100	
⁴⁰ Ar ¹²⁺	372	1,5.10 ⁴	10,2	117	
²² Ne ⁷⁺	235	1,5.10 ⁴	3	216	
¹³ C ⁴⁺	131	1,5.10 ⁴	1,1	292	

Cres

Single Event Upsets

SEU cross section is not related to the register state (high or low states)

17/03/2015

COPS

LET threshold around 17 MeV.cm²/mg and is slightly above the maximum LET protons can produce in silicon

Tilted angle provide under estimated results for this device

SEL results were computed with OMERE for Low and Geostationary Earth Orbits

SEL occurrences are signifiant and an anti-latchup system is mandatory for such space missions

19 Radiation Effects on Digital CMOS Image Sensors using Microlenses and Color Filters

CONCLUSION

- Digital CMOS image sensors using different technologies were evaluated against radiations
 - Two CIS foundries using 180nm technology node
 - One CIS foundry using 90nm technology node
- Evaluation of CMOS microlenses and color filters against space radiation
 - Environmental tests were also done with good results (physical analysis, vacuum, humidity, UV irradiation...)
- Dose effects induced dark current increase mainly attributed to displacement damage
- Single event effects were studied
 - SEU are not related to high or low states
 - Latchups are found to be significant in CIS1 devices

20 Radiation Effects on Digital CMOS Image Sensors using Microlenses and Color Filters

Thank you for your attention