Radiation Hard Memory

Radiation testing of candidate memory devices for Laplace mission ESTEC Contract No.: 4000101358/10/NL/AF

H. Schmidt¹, M. Hermann², K. Grürmann², F. Gliem² & V. Ferlet-Cavrois³

¹ Airbus DS GmbH Friedrichshafen, Germany
 ² IDA, TU Braunschweig, Germany
 ³ ESA/ESTEC Noordwijk, The Netherlands

CNES/ESA Radiation Effects Final Presentation Days 10th March 2015

Radiation Hard Memory – Final Presentation

Context

Radiation Hard Memory – Final Presentation

Context RHM Overview

- Radiation test program for commercial DRAM and NV memories for application in harsh radiation environment (EJSM Laplace / JUICE mission), focus on TID behaviour and severe SEE (SEFI, destructive failure, etc.)
- Collaboration between Airbus DS GmbH (former Astrium GmbH) as prime and IDA (Institut f
 ür Datentechnik und Kommunikationsnetze), TU Braunschweig
- □ Technical Officer (ESA): Véronique Ferlet-Cavrois
- ESTEC Contract No.: 4000101358/10/NL/AF

Context EJSM Laplace / JUICE Mission

ESA's Cosmic Vision 2015-2025 plan

- 2012: Selection of JUICE (Jupiter Icy Moon Explorer) for L1 launch slot of ESA Cosmic Vision science programme
 - Launch planned for 2022 with Ariane 5
 - Mission until > 2033 (>4000 days)
 - 7.5 years cruise towards Jupiter
 - Jupiter orbit insertion in 01/2030
 - Tour in the Jupiter system including several flybys of Callisto and two flybys of Europa
 - Callisto gravity assist sequence to raise orbit inclination to observe Jupiter polar regions and to transfer to Ganymede
 - Polar orbit insertion around Ganymede in 9/2032

Context JUICE Radiation Environment – Trapped Particles

Very high fluxes and high energies of electrons.

JUICE mission - average proton flux

Very high fluxes of lower energy protons, low fluxes of higher energy protons.

Context JUICE Radiation Environment - TID

Shielding	Total ionising dose in Si for Spherical Al Shielding							
Thickness	[rad]							
[mm] Total Electrons		Brems-	Trapped	Solar				
		strahlung	Protons	Protons				
0.05 0.1 0.2 0.4 0.6 0.8 1 1.5 2 2.5 3 4 5	1.75E+08 1.02E+08 6.03E+07 2.53E+07 1.81E+07 1.28E+07 6.33E+06 3.84E+06 2.63E+06 1.92E+06 1.17E+06 7.96E+05	1.67E+08 1.00E+08 5.96E+07 3.57E+07 2.51E+07 1.79E+07 1.28E+07 6.25E+06 3.78E+06 2.58E+06 1.88E+06 1.14E+06 7.75E+05	3.90E+05 2.56E+05 1.68E+05 1.12E+05 8.53E+04 6.63E+04 5.21E+04 3.27E+04 2.41E+04 1.96E+04 1.67E+04 1.32E+04 1.13E+04	6.15E+06 1.21E+06 2.43E+05 4.87E+04 1.93E+04 1.00E+04 6.04E+03 2.44E+03 1.25E+03 7.59E+02 5.04E+02 2.62E+02 1.59E+02	9.14E+05 4.60E+05 2.45E+05 1.35E+05 9.11E+04 6.88E+04 5.54E+04 3.69E+04 2.72E+04 2.11E+04 1.69E+04 1.19E+04 9.02E+03			
7 10 14 17 20 25 30 40 50 60 80 100	4.44E+05 2.35E+05 1.25E+05 8.50E+04 6.06E+04 3.71E+04 2.41E+04 1.18E+04 7.29E+03 5.32E+03 3.62E+03 2.64E+03	4.28E+05 2.23E+05 1.16E+05 7.73E+04 3.10E+04 1.86E+04 7.35E+03 3.41E+03 1.88E+03 8.06E+02 4.30E+02	9.19E+03 7.62E+03 6.52E+03 6.02E+03 5.64E+03 5.14E+03 4.71E+03 4.05E+03 3.57E+03 3.22E+03 2.68E+03 2.14E+03	7.50E+01 3.39E+01 1.58E+01 1.03E+01 7.12E+00 4.33E+00 2.88E+00 1.50E+00 9.10E-01 6.03E-01 3.13E-01 1.86E-01	5.85E+03 3.65E+03 2.28E+03 1.71E+03 1.33E+03 9.44E+02 7.05E+02 4.37E+02 3.03E+02 2.22E+02 1.33E+02 8.78E+01			

Aluminium Absorber Thickness (mm)

Context JUICE Radiation Environment - TID

TID Mission Profile:

Phase	Duration [days]	1mm [krad]	2mm [krad]	4mm [krad]	7mm [krad]	10mm [krad]	14mm [krad]	20mm [krad]	40mm [krad]
Cruise	2711	55	27	12	6	4	2	1	-
To Europa	458	1040	338	113	46	25	14	7	2
Europa Phase	38	383	160	65	29	17	10	5	1
Jupiter HL to Callisto	248	767	236	72	26	14	7	3	1
To Ganymede	311	1660	465	127	41	20	10	4	1
Ganymede science	318	8957	2613	782	296	156	82	39	7
Total	4084	12863	3839	1171	443	234	125	61	12
1 Europa Flyby	14	189	78	32	14	8	5	2	1

TID Level of interest: > 400 krad

Radiation Hard Memory – Final Presentation

Parts Selection

Parts Selection Selection Criteria - Radiation

□ Radiation performance – to be investigated

- TID: level of interest > 400 krad, minimum >> 50 krad
- SEL LET threshold > 60 MeV·cm²·mg⁻¹
- Good SEFI behaviour

Parts Selection

Selection Criteria - Mission Demands (SSR/SSMM)

Parts Selection Selection Criteria - Performance

□ Radiation performance – to be investigated

- TID: level of interest > 400 krad, minimum >> 50 krad
- SEL LET threshold > 60 MeV·cm²·mg⁻¹
- Good SEFI behaviour

□ Density \geq 4 Gb (MCM of 8 x 512 Mb "state-of-the-art")

- □ High speed, low power
- □ Easy I/F

Parts Selection

DRAM

- □ Computing DRAM
 - PM, EDO DRAM
 - SDR SDRAM ("state-of-the-art")
 - DDR, DDR2, DDR3, DDR4 SDRAM
- □ Mobile DRAM
- Graphic DRAM

Non-volatile Memory

- Flash
 - NOR (1 bit, 2 bits)
 NAND (SLC, MLC, TLC, 3-D)
- □ MRAM
 - MTJ
 - STT
- PCRAM
- □ FeRAM
- □ ReRAM, ...

Parts Selection DDR3 SDRAM

Focus on latest DDR3 SDRAM technology with monolithic densities up to 4 Gb. Additional tests with 2 Gb DDR3 parts.

4 Gb DDR3:

- □ Elpida EDJ4208BASE-DJ-F (obsolete)
- □ SK Hynix H5TQ4G83MFR-H9C
- Micron MT41J512M8RH-093:E
- □ Samsung K4B4G0846B-HCH9
- Nanya NT5CB512M8CN-EK

2 Gb DDR3:

- SK Hynix H5TQ2G83BFR-H9C
- □ Nanya N5CB256M8BN-CG
- Micron MT41J256M8HX-15E:D
- □ Samsung K4B2G0846B
- Samsung K4B2G0846D

Parts Selection NAND Flash

 Only SLC NAND flash technology provides sufficient endurance (50k...100k EPC), data retention, and speed. Test of heritage SLC parts as reference + latest SLC technology available.

Reference:

- □ Samsung K9WBG08U1M (SLC, 4 x 8 Gb, 51 nm)
- □ Micron MT29F8G08AAAWP-ET:A (SLC, 8 Gb, 50 nm)

Focus on state-of-the-art technology:

- □ Micron MT29F16G08ABACAWP-IT:C (SLC, 16 Gb, 25 nm)
- □ Micron MT29F32G08ABAAAWP-IT:A (SLC, 32 Gb, 25 nm)

Performed Test Campaigns

TID:

	October 2012:	1 st in-situ TID testing of 4 Gb DDR3
--	---------------	--

- March 2013: Unbiased pre-selecting TID tests on DDR3
- October 2013: Unbiased pre-selecting TID tests on DDR3
 - January 2014: In-situ TID testing of NAND flash and DDR3

SEE / Heavy lons:

- □ May 2011: 1st SEE tests of 2 Gb DDR3 and angular tests on NAND flash, RADEF
 - January 2012: SEE characterisations of Micron 16/32 Gb NAND flash & 2/4 Gb DDR3, RADEF
 - April 2012: Further SEE characterisations of NAND flash and DDR3, RADEF
- December 2012: High range SEE testing on DDR3 (including SEL) and angular characterisation of Micron 16 Gb NAND flash, TAMU

SEE / Protons

- □ March 2014: SEE characterisations of 4 Gb DDR3, PSI
- April 2014: SEE characterisations of 16/32 Gb NAND flash

Radiation Hard Memory – Final Presentation

Detailed Radiation Test Results

Main results

- Tolerance dose:
 - State-of-the-art NAND Flash: ≈ 30 krad
 - □ State-of-the-art DDR3 SDRAM: ≈ 400 krad (Hynix)
- Both types suffer from SEE error mechanisms with data loss:
 - NAND Flash: destructive failure (DF)
 - DDR3 SDRAM: device SEFI
- Both types are latch-up free
- Parts with good test coverage:
 - □ NAND Flash: 16/32-Gbit Micron, no other parts procurable
 - DDR3 SDRAM: 4-Gbit Hynix, other parts have substantial errors

Outline

NAND-Flash

□ Test equipment, error classification

- Test Results
 - Heavy-ion SEE
 - Proton SEE
 - ⁶⁰Co TID
- DDR3 SDRAM
 - Test equipment
 - DUT preparation
 - Test Results
 - Heavy-ion SEE
 - Proton SEE
 - ⁶⁰Co TID
- Comparison

NAND-Flash: SEE HI

Radiation Hard Memory – Final Presentation March, 10, 2015 ¹⁹

NAND-Flash: TID (+ SEE Protons)

NAND-Flash: Standard SEE Tests

Functional Block Diagram

Capability to operate up to 16 DUTs

NAND-Flash: Enhanced SEE Tests

Functional Block Diagram

- Heating and cooling
- Tilting

ID

Current Measurement (Remote controlled Digital Oscilloscope)

NAND-Flash: Heating of the DUT

PCB with DUT, Peltier element and temperature sensor

NAND-Flash: Tilting of the DUT

NAND-Flash: TID and Proton Tests

Functional Block Diagram

Capability to operate up to 16 DUTs

NAND-Flash: TID shielding box

16 DUTs mounted above the shielding box

NAND-Flash: Error Classification

SEE error pattern

NAND-Flash: Error Image

IDA

NAND-Flash results

Heavy Ion SEE

NAND-Flash SEE HI: SEU cross section

- TAMU cross section points are a bit below the RADEF measurement
- Effect of temperature?

ID

NAND-Flash SEE HI: SEFI

- classified into Column Errors, Row Errors and Block Errors
- measured individually for each mode
- the influence of the respective mode is rather minor
- Marching Mode 5 (without PC) delivers nearly the same cross section than Marching Mode 1 (with PC) in contrast to early NAND-Flash generations
- all row errors are transient
- all column errors are persistent
- one out of 2000 xenon ions generates a Class C Persistent SEFI (resolvable by PC)

NAND-Flash SEE HI: Class B Transient SEFI

Column Errors

Row Errors

Block Errors

Radiation Hard Memory – Final Presentation

NAND-Flash SEE HI: Class C Persistent SEFI

Column Errors

Block Errors

Row Errors

All Errors

Radiation Hard Memory – Final Presentation

NAND-Flash SEE HI: All SEFI

Radiation Hard Memory – Final Presentation March, 10, 2015 ³⁴

NAND-Flash SEE HI: Destructive Failure

permanent damage with definite data loss

- no flux dependence found (flux between 30 and 8000 cm⁻² s⁻¹)
- therefore we conclude that the DF is triggered by a single hit and not by the coincidence of several hits
- 16 Gbit Micron shows also other DF types affecting the on-chip microcontroller

NAND-Flash SEE HI: Destructive Failure

- Increase of write and erase current but
- No SEL found

NAND-Flash SEE HI: Soft Error Annealing

Short term and long term SEU annealing, 4 Gbit ST Microelectronics

NAND-Flash SEE HI: Soft Error Annealing

Short term and long term SEU annealing, Micron 16/32-Gbit NAND-Flash feature size
25 nm

NAND-Flash SEE HI: Annealing Comparison

Annealing depends strongly on the feature size

NAND-Flash SEE HI: Hard SEUs within MBUs

- Micron 16-Gbit SLC NAND-Flash, MBUs at normal incidence, Xe, LET=60
- hard SEUs accumulate over the mission time

ID

- soft SEUs accumulate only over the data storage time, which is only of some days
- hard SEUs survive scrubbing and can therefore be more harmful

NAND-Flash SEE HI: Hard SEUs within MBUs

With increasing LET the number of SEUs related to MBUs increases

NAND-Flash SEE HI: Annealing of Soft and Hard SEUs

 Cross section of soft and hard SEUs, directly after exposure and 20 days later, 16-Gbit Micron SLC NAND-Flash

NAND-Flash SEE HI: Annealing of Soft and Hard SEUs

 Cross section of soft and hard SEUs, directly after exposure and 20 days later, 16-Gbit Micron SLC NAND-Flash

NAND-Flash SEE HI: Annealing of Hard SEUs

 Short term / long term Hard Error annealing, Micron 16/32Gbit NAND-Flash DUTs unbiased

NAND-Flash SEE HI: Annealing of Hard SEUs

Development of the hard SEU count after repeated erase-write-read cycles

NAND-Flash SEE HI: Omni directional ion incidence

- Samsung 4x8-Gbit, Kr, TAMU, Texas
- strong angular dependence

NAND-Flash SEE HI: Omni directional ion incidence

- Micron 16-Gbit, Kr, TAMU, Texas
- weak angular dependence

NAND-Flash results

Proton SEE

NAND-Flash SEE Proton: SEU

- 25 nm NAND-Flash is by three orders of magnitude more sensitive to proton SEUs than 51 nm NAND-Flash
- increase of SEUs towards low energies

should be investigated further to exclude peculiarities of the source

NAND-Flash SEE Proton: SEFI, Column Errors

- the SEFI count is very low
- to get more SEFI events a higher fluence is needed
- limited beam time
- Iimited total dose

ID

NAND-Flash SEE Proton: SEFI, Row Errors

- the SEFI count is very low
- to get more SEFI events a higher fluence is needed
- limited beam time
- Iimited total dose

ID

NAND-Flash SEE Proton: SEFI, Block Errors

- the SEFI count is very low
- to get more SEFI events a higher fluence is needed
- limited beam time
- Iimited total dose
- No Destructive Failure or SEL observed

NAND-Flash results

⁶⁰Co TID

NAND-Flash TID: Error Share in Storage Mode

- Class A SEUs and Class D Destructive Failures were observed
- no Class B or C SEFIs

ID

- functional breakdown of each DUT is marked with dotted line
- first random data errors already between 5 and 10 krad(Si)
- Destructive Failure between 32 and 64 krad (Si)

NAND-Flash TID: Error Share in Refresh Mode

Refresh every 2.5 krad(Si)

- first random data errors already between 3 and 30 krad(Si)
- periodic refresh keeps the error share below 1 · 10⁻⁵, tolerable before ECC
- Refresh has no influence on the Destructive Failure
- with periodic refresh the Destructive Failure occurrence determines the total dose

NAND-Flash TID: Standby Current

Storage Mode

Refresh Mode

- no correlation between standby current increase and Destructive Failure
- standby current remains below the specified datasheet value at DF
- After DF the standby current increases further or drops again in some cases
- Standby current of DUTs operated at 3.6V is by a factor of 5 higher compared to the 3.3V DUTs

DDR3 – Overview

- Test equipment
- DUT preparation
- Test procedures
- Test results
 - □ Heavy-ion SEE
 - Proton SEE
 - □ ⁶⁰Co TID

DDR3 – Test equipment

DDR3 – Test equipment

- Custom DDR3 SDRAM controller
- Special feature: software conditioning
 - □ Rewrite mode registers
 - Reset DLL
 - Calibrate ZQ
- Interfaces with Xilinx' PHY

DDR3 – Test equipment

Test equipment – shielding

Test equipment – shielding

DDR3 – DUT preparation

Thinning was performed by Fraunhofer Institute for Applied Optics and Precision Engineering, Jena

DDR3 – SEE error classification

- SEUs
 - Stuck bits
- Row SEFis
- Column SEFIs
- Device SEFIs

Radiation Hard Memory – Final Presentation

DDR3 SDRAM results

Heavy ion SEE

DDR3 results – heavy ion SEE - Overview

- 4 tests:
 - □ 3 × RADEF, Jyväskylä
 - □ 1 × TAMU, College Station
- 7 tested parts:
 - 2 Gbit: Samsung, Hynix, Micron, Nanya
 - 4 Gbit: Samsung, Hynix, Elpida

DDR3 results – heavy ion SEUs

DDR3 results – heavy ion row SEFIs

DDR3 results – heavy ion column SEFIs

DDR3 results – heavy ion device SEFIs

DDR3 results – SEL

- Setup:
 - □ 4 Gbit, Samsung and Hynix
 - □ 80 °C
 - □ 10⁷ cm⁻² Xenon, 61.1 MeV cm² / mg
 - □ Write/read mode
- Result:
 - No SEL
 - Current returns to original value after irradiation

DDR3 results – hard SEUs

Hard SEUs: can not be removed by rewriting

DDR3 results – hard SEU annealing

No soft SEU annealing for DRAM due to refresh

Samsung, 2 Gbit

DDR3 results – heavy ion SEE – SEFI mitigation

- C1
 - □ Rewrite mode registers
 - DLL reset
 - ZQ calibration

C2

- Reset DDR3 device
- Reset memory controller (recalibrates line delays)

C3

Power cycle

No data loss

Data retention not guaranteed

Data loss

DDR3 results – heavy ion SEE – SEFI mitigation

ID

DDR3 results – heavy ion SEE – current

4-Gbit Hynix devices, LET 60 MeV cm² / mg, 80 °C

DDR3 SDRAM results

Proton SEE

IDA

IDA

Radiation Hard Memory – Final Presentation March, 10, 2015 ⁸⁰

DDR3 results – proton column SEFIs

IDA

Radiation Hard Memory – Final Presentation March, 10, 2015 ⁸¹

DDR3 results – proton device SEFIs

IDA

DDR3 results – proton SEU polarity

DDR3 SDRAM results

⁶⁰Co TID

DDR3 results – TID - Overview

- 4 tests:
 - □ 2 × In-Situ
 - □ 2 × Unbiased
- 3 + 7 parts tested:
 - □ In-Situ, 4 Gbit: Samsung, Hynix, Micron
 - □ Unbiased, 4 Gbit: Samsung, Hynix, Micron, Nanya, Elpida
 - Unbiased, 2 Gbit: Samsung, Hynix, Micron, Nanya

Samsung, 4 Gbit, in-situ, room temperature

This part looked good in an unbiased test, but bad in an in-situ test!

• 4-Gbit Hynix device: no errors up to >400 krad at room temperature

DDR3 results – TID – error annealing

Samsung, 4 Gbit, in-situ, 422 krad, room temperature

DDR3 results – TID – current

DDR3 results – TID – Band error pattern – background

(2) Write/read page buffer

DDR3 results – TID – Band error pattern (4-Gbit Samsung)

Radiation Hard Memory – Final Presentation

DDR3 results – TID – Band error pattern – background

- Last accessed page is repeatedly opened after the test
- Errors appear on the last page and other pages
- Observed for:
 - □ 4-Gbit Samsung (in-situ)
 - □ 2-Gbit Samsung (revision D, unbiased)
 - 2-Gbit Micron (unbiased)
 - 2-Gbit Hynix (unbiased)
- Not observed for:
 - 4-Gbit Hynix (in-situ/unbiased)
 - 4-Gbit Elpida (unbiased)
 - 2-Gbit Samsung (revision B, unbiased)
 - 2-Gbit Nanya (unbiased)
- Mechanism not understood so far
- Can be mitigated by appropriate controller design

DDR3 results – summary

SEE:

- □ **No SEL** (LET=60, normal incidence)
- □ Software conditioning reduces SEFI sensitivity for some part types
- □ ≈10% hard SEUs
- Significant hard SEU annealing

TID:

- □ DDR3 SDRAM is useful for \geq 400 krad (Hynix)
- Other parts: band error pattern triggered by mode of operation
- Significant annealing
- □ Idle current increase: none (Hynix) to extreme (Micron)
- In-situ results can be worse than unbiased results (example: 4-Gbit Micron)
 - In-situ tests are required
 - Unbiased preselection tests may be useful

Comparison between

NAND-Flash and DDR3 SDRAM

Test Results

Comparison SEE HI: SEU

ID

The 25 nm NAND-Flash cross section at low LET is about two orders of magnitude higher compared to the DDR3 SDRAM cross section and the 4x8 Gbit NAND-Flash cross section.

Comparison SEE HI: Column SEFI

ID

The column SEFI cross section of the 2 Gbit Micron DDR3 SDRAM is two orders of magnitude higher compared to the respective 16/32 Gbit NAND-Flash cross section.

Comparison SEE HI: Row SEFI

- There are big differences among the DDR3 SDRAM Row SEFI cross sections.
- The 2 Gbit Micron cross section is about two orders of magnitude above the favourable DDR3 parts.
- The 16/32 Gbit NAND-Flash cross section is similar to the favourable DDR3 SDRAM cross sections.

Comparison SEE HI: Block SEFI

Class C: Persistent

NAND-Flash only

Class B: Transient

Comparison SEE HI: Device SEFI

- DDR3 SDRAM only
- The effectiveness of software conditioning depends on the manufacturer.

Comparison SEE HI: Destructive Failure

NAND-Flash only

ID

- The NAND-Flash Destructive Failure is permanent damage with definite data loss.
- Neither NAND-Flash nor DDR3 SDRAM suffered from SEL

Comparison SEE Proton: SEU

NAND-Flash

DDR3 SDRAM

■ 25 nm NAND-Flash is by the factor of 400 more sensitive to proton SEUs than DDR3 SDRAM (feature size ≈ 35 nm). NAND-Flash and DDR3 SDRAM show an increase of SEUs towards low energies. This should be investigated further to exclude peculiarities of the source.

Comparison SEE Proton: Column SEFI

NAND-Flash

DDR3 SDRAM

In most cases the SEFI count is very low. To get more SEFI events the fluence a higher fluence is needed, which is hard to realize because of the limited beam time and in case of NAND-Flash because of the limited total dose.

Comparison SEE Proton: Row SEFI

NAND-Flash

DDR3 SDRAM

Comparison SEE Proton: Block/Device SEFI

NAND-Flash Block SEFI

 Neither NAND-Flash nor DDR3 SDRAM suffered from permanent damaging effects like Destructive Failure or SEL

Radiation Hard Memory – Final Presentation March, 10, 2015 ¹⁰⁵

Comparison TID

NAND-Flash

DDR3 SDRAM

Radiation Hard Memory – Final Presentation

March, 10, 2015 106

Recent Publications

- [1] M. Herrmann et al., "Heavy ion SEE test of 2 Gbit DDR3 SDRAM", RADECS Data Workshop, DW-28, 2011
- [2] K. Grürmann et al., "Heavy Ion sensitivity of 16/32-Gbit NAND-Flash and 4-Gbit DDR3 SDRAM", IEEE NSREC Data Workshop, W-9, 2012
- [3] M. Herrmann et al., "New SEE Test Results for 4 Gbit DDR3 SDRAM", RADECS Data Workshop, DW-25L, 2012
- [4] K. Grürmann et al., "New SEE Test Results of 16/32-Gbit SLC NAND-Flash", RADECS Data Workshop, DW-23L, 2012
- [5] K. Grürmann et al., "Radiation Effects in Flash Memories", IEEE TNS Special Issue, 2013

Radiation Hard Memory – Final Presentation

Conclusions

Results

DDR3 SDRAM

- DDR3 technology in general low sensitive to TID
- Outstanding TID performance of SK Hynix 4 Gb and Samsung 4 Gb devices:
 - H5TQ4G83MFR-H9C: almost insensitive to TID > 400 krad
 - K4B4G0846B-HCH9: 1st data errors at TID > 150 krad
- Very promising candidates for JUICE mission regarding TID

NAND Flash

- Heritage parts with good TID performance > 90 krad, well suitable for JUICE mission
- Scaled technologies show much lower TID tolerance:
 - Functional failures at TID > 30 krad (HDR) independent from applied intermediate refresh
 - Suitable for TID level ≤ 25 krad
 - High amount of shielding mandatory for use in JUICE mission

Results

DDR3 SDRAM

- Less sensitive to SEU than former technologies and NAND flash
- Increased sensitivity to SEFI leads to the need of further mitigation techniques
- Increase of SEE sensitivity to protons with scaling direct ionisation?
- > No Single Event Latch-up at LET > 60 MeVcm²mg⁻¹ and T > 80°C

NAND Flash

- Very good SEU and SEFI performance of heritage parts
- Scaled technologies show increased SEU and SEFI sensitivity compared to heritage parts, but still reasonable
- No data loss in case of SEFI due to non-volatility
- Increase of SEE sensitivity to protons with scaling, 25 nm technology direct ionisation?
- No Single Event Latch-up at LET > 60 MeVcm²mg⁻¹ and T > 80°C
 BUT destructive events at LET < 15 MeVcm²mg⁻¹ (LET ≈ 30 MeVcm²mg⁻¹ for heritage parts):
 λ_{destructive} ≈ 4.3 FIT (< 0.1 FIT for heritage parts)

Results SEE Rates

SEU	Quiet (JUICE)			Solar flare (CREME96, Worst Week)		
[day ⁻¹ bit ⁻¹]	HI	p ⁺	Σ	Н	p ⁺	Σ
DDR3 SDRAM						
H5TQ4G83MFR	1.0E-14	1.6E-12	1.6E-12	9.0E-13	4.1E-09	4.1E-09
K4B4G0846B	5.0E-13	4.1E-13	9.1E-13	4.4E-11	1.1E-09	1.1E-09
NAND Flash						
K9WBG08U1M	8.8E-12	5.2E-14	8.9E-12	7.9E-10	4.4E-10	1.2E-09
MI29F16G08ABACAWP-II:C/	5.7E-10	8.1E-10	1.4E-09	3.6E-08	1.3E-06	1.3E-06
MT29F32G08ABAAAWP-IT:A						
SEFI	Quiet (JUICE)			Solar flare (CREME96, Worst Week)		
[day⁻¹]	HI	p⁺	Σ	HI	p⁺	Σ
DDR3 SDRAM						
H5TQ4G83MFR	6.6E-04	6.5E-05	7.3E-04	4.8E-01	2.1E-01	6.9E-01
K4B4G0846B	7.9E-05	7.2E-07	8.0E-05	2.9E-02	3.6E-02	6.5E-02
NAND Flash						
K9WBG08U1M	1.3E-05	7.9E-07	1.4E-05	1.4E-03	6.1E-03	7.5E-03
MT29F16G08ABACAWP-IT:C/	4.1E-04	4.5E-04	8.6E-04	1.8E-01	1.3	1.5
MT29F32G08ABAAAWP-IT:A						
Destructive Failure	Quiet (JUICE)			Solar flare (CREME96, Worst Week)		
[day⁻¹]	н	p+	Σ	н	p+	Σ
NAND Flash						
K9WBG08U1M	2.5E-09	-	2.5E-09	2.2E-07	-	2.2E-07
MT29F16G08ABACAWP-IT:C	1.0E-07	-	1.0E-07	9.6E-06	-	9.6E-06

Radiation Hard Memory – Final Presentation

