

Advanced Techniques for Radiation Characterization of ProASIC3 FPGAs

Adrian Evans, Dan Alexandrescu {adrian,dan}@iroctech.com

ESA Project Officer : Véronique Ferlet-Cavrois Veronique.Ferlet-Cavrois@esa.int

CNES/ESA Radiation Effects Final Presentation Days 2015 CLS – Toulouse - 10-MAR-2015

Funded under ESA Contract : 4000107761/13/NL/CL / CCN2

Outline

Background on ProASIC3 FPGAs

- SSI Heavy-Ion Micro Beam Facility
- RAMs and Flip-Flops

Background on ProASIC3 FPGAs

Advanced Radiation Characterization of ProASIC3

4

	A3PE3000L
Core Voltage (V)	1.2 1.5
Technology	130nm, 7ML
VeraTiles	75 264
4608 bit BRAMS	112
CCC (including PLL)	6
VersaNet Globals	18

CCC ______ RAM Block 4,608-Bit Dual-Port SRAM or FIFO Block Pro I/Os VersaTile RAM Block 4,608-Bit Dual-Port SRAM or FIFO Block ISP AES User Nonvolatile Flash*Freeze Charo FlashRom Pumps Decryption* Technology

One VersaTile can implement:

- Any 3 input combinatorial function
- A DFF or latch with options for \geq preset, clear, enable
- Configuration is controlled by floating gate switch

SEE and Dose Extensively Studied

Radiation effects in ProASIC3 devices have been extensively studied !!

> New contributions :

- 1. Micro beam study showing sensitive regions
- 2. Image enhancement techniques for regular structures
- 3. In-depth study of effects on PLLs

TECH

Device Under Study : A3P3000L

A3P3000L				
Number VersaTiles	75 264			
Number RAMs (4608 bits)	504			
Package	PQ208			
PLL / CCC	2/6			

Opened A3P3000L

Top-side opened by laser decapsulation, mechanical wet chemical finishing, coating removal, non-abrasive cleaner

TECH

GSI Heavy Ion Micro Beam Facility

GSI Micro Beam Facility

Helmholtzzentrum f
ür Schwerionenforschung
 Located in Darmstadt (south of Frankfurt)

Vacuum Chamber

Temporal Beam Structure

- Ions are accelerated in linear accelerator (UNILAC) up to 11.4 MeV/µm
- ➢ Burst of ≈10 ions arrive every 200 msecs
- Tests performed with 2 ions : Au (94 MeVocm²/mg), Ti (19 MeVocm²/mg)
- ➢ Beam resolution is ≈500 nm (≈90% probability radius)

Experimental Setup

- 1. Reset DUT
- 2. Open beam switch
- 3. Detect one ion
- 4. Close beam switch
- 5. Query DUT

- Individual ions targeted at specific locations on the die by X,Y magnets (12-bit resolution)
- > After each ion is fired, the response on the DUT must be queried
- Control card performs hand-shaking between facility and DUT

- Request an ion
- Wait for ion to be detected
- Record X,Y co-ordinates from facility
- Query whether error detected in DUT

- 432 µm x 432 µm
- Free running mode
 - Co-ordinates are "random"
 - Image progressively filled in

RAMs and Flip-Flops

Test Sequence

- 1. Write pattern into memory. (~1.3 usec).
- 2. Read back pattern from memory + check. (~1.3 usec).
- 3. Wait for ions. (Handshaking).
- 4. Read back pattern from memory. (~1.3 usec). -> Report errors (macro, addr, bit)
- 5. Read back pattern from memory. (~1.3 usec). -> Report errors (macro, addr, bit)

Imaging of BRAM (1)

Imaging of BRAM (2)

- Each colour dot represents an ion that produced a bit upset
- Colours assigned so each logical bit has unique colour
- Image is rotated versus optical image

MCU Patterns

MCU Patterns (Ti ions – 17 MeVcm²/mg) Many ions produced MCUs
 Exact patterns extracted
 No MBUs observed

 (>=2 bits in same word)

LET MeV∘cm2 /mg	Error %	SBU %	MCU2 %	MCU3 %	MCU4 %	MCU5 %	MCU6+ %
94 (Au)	79	52.6	16.8	5.13	3.58	0.6	0.23
17 (Ti)	35	29.2	5.1	0.66	0.02	0.02	0
Extent of MCUs (ratio versus number of ions fired)							

Imaging of Flip-Flops / Latches

Au Ions (94 MeV°cm2 / mg)

	Local CS (cm²) Au ions 94 MeV°cm2 /mg	Local CS (cm²) Ti ions 19 MeV∘cm2 /mg
FF @ 0	9.03 e-6	2.58 e-6
FF @ 1	9.52 e-6	2.59 e-6
Latch @ 0	9.35 e-6	2.23 e-6
Latch @ 1	8.86 e-6	1.95 e-6

- Flip-flops, latches in arrays
- Sensitivity mapped storing 0,1
- Sensitive region is localized
- Local CS calculated as ratio of upsets to scanned area

Co-ordinates of each ion extracted to make a composite view for each logical bit position

Composite images superimposed to build amalgamated view

Increased spatial resolution of a single cell

PLLs

PLL Test Flow (On Chip Monitoring)

- Basic idea : sample CLK_UUT at 8x
- At power-up, each sample point "locks" into position
- > 4 / 8 sample points "lock"
- ➢ Error if locked position moves (e.g. edge moves ≥ 25% cycle)

Clock Clock Clock Clock Clock Monitor 1 Monitor 2 Monitor 3 Monitor 4 Monitor 5 CLK 250 CLK UUT 1(62.5MHz PLL Under Test CLK_UUT_2(62.5MHz CLK 50 (in) REFERENCE GLB CLK_UUT_3(62.5MHz CLK 62.5 PLL YB VCO=125MHz CLK UUT 4(62.5MHz VCO=250MHz CLK 50 (out) GI C CLK UUT 5(62.5MHz

Reference PLL In : 50 MHz Out : 50,62.5,250 MHz PLL Under Test In : 50 MHz Output : 5 x (62.5 MHz)

Advanced Radiation Characterization of ProASIC3

PLL Test Flow (Off Chip Monitoring)

- To gain better insight into what is occurring when the PLL "error detector" triggers
- External DSO samples 4 of 5 of the PLL outputs
- Record signal trace if on-chip circuit triggers a PLL error

IROCTECH-

PLL Sensitivity Map

Events classified based on
 Did 1-4 or all 5 detectors fire?

Did loss of lock fire?

Very few of the real upsets triggered loss of lock (LoL). Can not use LoL for error detection....

PLL Sensitivity Map - 144 μm x 228 μm (Au Ions 94 MeV ° cm²/mg) light purple = 5 phase detectors triggered pink = 1-4 phase detectors triggered dark blue = loss of lock only yellow = phase detector and loss of lock

Detailed PLL Effects

Missing Pulses

Narrow/Wide Pulses

Truncated Pulses

CNES/ESA Radiation Days

2.5

2

Voltage (V)

0.5

0

Advanced Radiation Characterization of ProASIC3

Temporary Frequency Shift

Conclusions

Conclusions

> HI micro-beam useful for identifying sensitive regions

- Increased experimental complexity
- > Makes sense early in process/circuit development
- Potential to provide detailed insight
 For circuit designers SEE weak spots
 For soft-error simulation detailed mapping
- Combining on-chip (detection) and off-chip (capture) techniques for detailed PLL effects analyis
- > PLL loss of lock can't be used for error detection in ProASIC3

Thank You!

Contacts

Web Site: www.iroctech.com

Contacts:

adrian@iroctech.com dan@iroctech.com