

SEE characterization of SpaceWire Remote Terminal Control (RTC) AT7913 of ATMEL

Enoal LE GOULVEN, Pierre GARCIA, Alexandre

ROUSSET, Ludovic PUYBUSQUE, Athina VAROTSOU

CNES / ESA March 10 2015

The project

SEE tests

- Beam description
- Device description
- Test bench overview
- For each function tested
 - Test method
 - Test results

Conclusion

Aim of the project

- The test has performed in response at request of European Space Agency
- The development has lasted several months
- 40 hours of beam facility have used, separated in two test campaigns.

SEE tests: Parts

PART IDENTIFICATION					
Туре :	AT7913				
Manufacturer :	ATMEL				
Function :	SpaceWire Remote Terminal Controller				
PARTS PROCUREMENT INFORMATIONS					
Packaging :	MCGA 349				
Sample size:	2 irradiated samples				

Beam description

Irradiation facility: U.C.L.

- At UCL, Heavy ions available are separated in two "Ion Cocktails", one for the High LET (M/Q=5) and a second one for the High Range (M/Q=3.3). Here bellows are given the characteristics of each cocktail.
- The irradiations were performed with the heavy ion in yellow of High range cocktail and the High LET cocktail.

lon	Energy (MeV)	Range (µm(Si))	LET (MeV.cm ² .mg ⁻¹)
¹⁵ N ³⁺	60	59	3.3
²⁰ Ne ⁴⁺	78	45	6.4
⁴⁰ Ar ⁸⁺	151	40	15.9
⁸⁴ Kr ¹⁷⁺	305	39	40.4
¹²⁴ Xe ²⁵⁺	420	37	67.7

lon	Energy (MeV)	Range (µm(Si))	LET (MeV.cm².mg ⁻¹)
¹³ C ⁴⁺	131	292	1.1
²² Ne ⁷⁺	235	216	3
⁴⁰ Ar ¹²⁺	372	117	10.2
⁵⁸ Ni ¹⁸⁺	567	100	20.4
⁸³ Kr ²⁵⁺	756	92	32.6

UCL cocktail M/Q=5

UCL cocktail M/Q=3.3

 The SpaceWire Remote Terminal Controller (RTC) is a bridge between the SpaceWire network and the CAN bus, providing a fully integrated system.

The functions tested are:

- an embedded microprocessor
- a FIFO interfeace
- a ADC/DAC interface
- a Memory Controller
- a UARTs port
- a 32-bit timers
- a General Purpose Input Output
- a On-Chip Memory
- a CAN bus controller
- a SpaceWire controller

Test bench overview

* A test is terminated for a fluence of 10⁶.cm⁻² is reached or 100 events are observed.

CNES / ESA March 10 2015

The LEON2-FT

SRAM, PROM RS232/422 EEPROM, FLASH-PROM

CNES / ESA March 10 2015

TRAD, Tests & Radiations

Leon2-FT: Description

LEON2-FT Sparc V8 Processor

- 4K instruction caches / 4K data caches
- Meiko FPU
- Interrupt Controller
- Uart serial links
- 32-bit Timers
- Memory Controller
- General purpose IO
- Debug Support Unit (DSU)
- stage pipeline

- Two target applications using in dynamic test PARANOÏA and FFT method:
 - For each test, the test bench provide this log :
 - Number of successful/unsuccessful runs
 - Number of traps
 - Number of corrected/uncorrected errors
- SEU statics tests comparison before/after irradiation of :
 - Registers
 - Cache memories (Instruction and Data)

Leon2-FT: Dynamic test results

SEE detected:

- A majority of corrected errors
- Few Traps
- Few unsuccessful runs
- FFT and Paranoïa show the same sensitivity
- No lost of functionality which require OFF/ON of the power supply

CNES / ESA March 10 2015

Leon2-FT: Static test results

SEE detected:

- SEU on Instruction and Data cache memories
- Few SEU on Registers

CNES / ESA March 10 2015

FIFO & ADC/DAC interface

CNES / ESA March 10 2015

TRAD, Tests & Radiations

FIFO & ADC/DAC interface: Test method

FIFO and ADC/DAC interface are put in periodic writing operation and these outputs are probed:

- Data and address bus
- Write command
- Static output Default value

FIFO & ADC/DAC interface: Test results

SEE detected on both interface:

- SEU on Write command
- Few SEFI due to Trap

CNES / ESA March 10 2015

Memory Controller

CNES / ESA March 10 2015

TRAD, Tests & Radiations

Memory Controller: Test method

- Memory controller is put in write operation and its outputs are probed:
 - Data and address bus
 - Write command

Tests & radiations

Static output Default value

SEE detected on both interface:

SEFI due to error on register and trap

Run	Part	lon	Energy (MeV)	Range (µm)	LET (MeV.cm²/mg)	Flux (φ) (cm ⁻² .s ⁻¹)	Time (s)	Run Fluence (Φ) (cm ⁻²)	SET WrN	SET Static Signals	SEU	SEFI	Number of Iterration
High Range M/Q=3.3													
13	1	83 Kr 25+	756	92	32.6	1.09E+03	555	6.03E+05	0	0	0	0	43497
45	2	83 Kr 25+	756	92	32.6	1.03E+03	973	1.00E+06	0	0	0	1	16383
58	1	58 Ni 18+	567	100	20.4	1.01E+03	986	1.00E+06	0	0	0	0	12156
75	2	58 Ni 18+	567	100	20.4	1.18E+03	849	1.00E+06	0	0	0	0	65505
93	1	22 Ne 7+	235	216	3	1.63E+03	37	6.03E+04	0	0	0	0	7491
						High Rang	ge M/Q:	=5					
132	1	124Xe 26+	420	37	67.7	1.06E+03	946	1.00E+06	0	0	0	0	10160
167	2	124Xe 26+	420	37	67.7	1.44E+03	696	1.00E+06	0	1	0	2	25246

Test results

<u>Me</u> m <u>C</u> B error				Data expected					
MemCsN (\$)	MemCB (\$)	Address (\$)	Data (\$)	MemCsN (\$)	MemCB (\$)	Address (\$)	Data (\$)		
E	0	555554	55555555	E	С	555554	55555555		
D	00	2AAAA8	AAAAAAA	D	С	2AAAA8	AAAAAAA		

Memory controller SEFI case

32-bit Timers

SRAM, PROM RS232/422 EEPROM, FLASH-PROM

CNES / ESA March 10 2015

TRAD, Tests & Radiations

- On each timer interrupt, the Leon2-FT toggle Out A, Out B and Out C. Two kinds of event can be observed:
 - If the error is observed on the 3 output \rightarrow SEU on Timer or Leon2.

If only one output is impacted → SEU on the output stage

32-bit Timers: Test Results

SEE detected on:

- Mainly on Leon and Timer
- No SEU on Output stage

AT7913 - 32-bit Timers - SET Cross Section

CNES / ESA March 10 2015

SRAM, PROM RS232/422 EEPROM, FLASH-PROM

CNES / ESA March 10 2015

TRAD, Tests & Radiations

- The Leon2-FT sends continuously through the UARTs port a same data:
 - An error is detected when the pulse widths change on TX1 or TX2 outputs

SEE detected on:

- Few SET observed
- Few SEFI observed

	UART 1				UART 2			
(MeV cm2 mq-1)	SET		SEFI		SET		SEFI	
	N° 1	N° 2	N° 1	N° 2	N° 1	N° 2	N° 1	N° 2
67.7	0	0	4	2	0	1	0	1
32.6	0	1	0	0	0	0	0	1
20.4	0	1	0	0	0	0	0	1
10.2	0	-	0	-	0	-	0	-
3	0	0	0	0	0	0	0	0

UARTs results

SRAM, PROM RS232/422 EEPROM, FLASH-PROM

CNES / ESA March 10 2015

TRAD, Tests & Radiations

• The 32-bits GPIO are set to '0':

- When a GPIO switches from '0' to '1' due to direction changing, a SEFI is detected.
- When they is a disruption on GPIO, a SEU is detected

Link between GPIO and the system of error detection

- SEE detected on:
 - No SEU observed
 - Few SEFI observed due to direction switching

LET Eff	SEU		SEFI	
(MeV.cm ² .mg-1)	N° 1	N° 2	N° 1	N° 2
67.7	0	0	2	3
32.6	0	0	0	0

GPIO results

On-chip Memory

CNES / ESA March 10 2015

TRAD, Tests & Radiations

- The Debug Support Unit is used to access the on-chip memory
- The on chip memory include an EDAC protection. This protection allow to correct one error and detect two errors.
- The memory is tested with and without EDAC in order to evaluate its effect.

CNES / ESA March 10 2015

TRAD, Tests & Radiations

On-chip Memory: Test Results

SEE detected with EDAC:

- Mainly MBU are detected but that can be due to high flux
- Few SEU are detected on data due to SEU on 7-bit of EDAC protection

SEE detected without EDAC:

- Mainly SEU are detected
- The sensitivity of MBU is the same with and without EDAC protection

CNES / ESA March 10 2015

SRAM, PROM RS232/422 EEPROM, FLASH-PROM

CNES / ESA March 10 2015

TRAD, Tests & Radiations

- The Leon2-FT sends continuously through the CAN bus a same data:
 - When a disruption occurs on the TX of CAN bus, a SEE is detected

- SEE detected on:
 - Few SEU observed
 - Few SEFI observed

LET Eff	SE	EU	SEFI		
(MeV.cm ² .mg-1)	N° 1 N° 2		N° 1	N° 2	
67.7	2	3	3	0	
32.6	0	0	0	0	

CAN bus results

SRAM, PROM RS232/422 EEPROM, FLASH-PROM

CNES / ESA March 10 2015

TRAD, Tests & Radiations

SpaceWire: Test Method

- The SpaceWire link two signals Data and Strobe. The clock signal is encoded into a Strobe signal in such a way that XORing the Data.
- The Leon2-FT sends continuously through the SpaceWire a same data.
- Four frequencies are used : 10, 50, 100, 200 MHz
- The SpaceWire Link Anylser Mk2 of StarDundee is set to trigger and to acquisition of signals for all errors.

SpaceWire: Test Results

SEE detected on:

- Few SEU observed
 - They is the same sensitivity for four frequencies
 - Three error types were observed: Disconnect, Escape-EOP and Parity Error
 - After an error the link restart automatically
- No SEFI observed

LET Eff $(Mo)/cm^2 mg(1)$	Cross Section (cm ²)									
	10MHz		50MHz		100	MHz	200MHz			
(IVIEV.CITI .ITIg-1)	N° 1	N° 2	N° 1	N° 2	N° 1	N° 2	N° 1	N° 2		
67.7	7.00E-06	2.25E-06	3.00E-06	2.83E-06	3.30E-06	7.99E-06	1.62E-06	4.40E-06		
40.4	1.45E-06	2.00E-06	2.35E-06	2.64E-06	1.00E-06	8.82E-07	<1.00E-06	2.33E-06		
32.6	1.00E-06	1.00E-06	2.00E-06	1.00E-06	2.00E-06	<1.00E-06	<1.00E-06	1.00E-06		
20.4	3.00E-06	1.00E-06	<1.00E-06	<1.00E-06	<1.00E-06	<1.00E-06	<1.00E-06	<1.00E-06		
10.2	<1.00E-06	-	-	-	-	-	-	-		
3	<1.00E-06	<1.00E-06	-	-	-	-	-	-		

SpaceWire cross-section

 When a disconnect occurs, the signal is interrupt during 16µs next the link is initialized.

- When no data sending, the link stay enable and continuously sends a "NULL" character.
- A Escape-EOP occurs during the "NULL" character sending.
- A "NULL" consists of "Escape" (ESC) and "Flow Control Token" (FCT) characters
- A "Escape-EOP" consists of "Escape" (ESC) and "End of Packet" (EOP) characters

CNES / ESA March 10 2015

- For each character they is a parity bit
- If they is a delay on the Data and Strobe signals, the system detect a parity error.

CNES / ESA March 10 2015

Conclusions

SEE characterisation

- Parts no sensitive to SEL
- The Leon2-FT and the on-chip memory are more sensitive than peripheral to SEU and SEFI. But the protection decreases this sensitivity.
 - an embedded microprocessor
 - Dynamic tests → SEU corrected errors for two target applications
 - − Statics tests → SEU on cache memories and few SEU on registers

 - □ a 32-bit timers → SEU observed
 - □ a UARTs port → few SEU and few SEFI observed
 - a General Purpose Input Output
 few SEFI observed
 - a On-Chip Memory
 sensitive to SEU without EDAC protection and few MBU observed with and without EDAC protection certainly due to high flux
 - □ a CAN bus controller → few SEU and few SEFI observed
 - □ a SpaceWire controller → few SEU observed