

SEE Testing of ADC and DAC

Christian POIVEY¹, Francois Xavier Guerre²

¹ESA ESTEC ² HIREX Engineering

European Space Agency

CNES ESA Radiation Effects Final Presentations Days March 9&10, 2015

Outline

- 1. Introduction
- 2. Component tested
- 3. SEE Test method investigated

Introduction

- 1. Different test methods can be used to perform a SEE test on ADC/DAC device
 - a. Static test
 - b. ADC/DAC
 - c. Golden chip
 - d. Compare DUT output to previous conversion cycles
 - Beat Frequency
 - 4 points
 - other

Туре	Manufacturer	Function
AD976	Analog Devices	ADC 16 bits
RHF1401	ST Micro	ADC 14 bits
ADC128S102	ті	ADC 12 bits 8 channels
DAC5675	ті	DAC 14 bits

Beat Frequency Test Method

- With the input frequency f_{in} set very close to the sampling frequency, the output code of the ADC is a slow moving sine wave, changing at a rate of 1 LSB per clock cycle.
 - a. Input sine frequency f_{in} and sampling frequency f_s must repond to:
 - $f_{in}=f_s/(2^{N*}PI)$ with N=16
 - b. SEE detection: compare DUT output with previous conversion cycle output

European Space Agency

4-point method

- 1. DUT sampling frequency being fixed, the selected frequency of the sinewave input is such that only 4 points of the sine output are converted continuously.
 - Input sinewave frequency f_{in} and sampling frequency f_s must repond to:

$$- f_{in} = f_s/4$$

b. SEE detection: compare DUT output with output of 4 clock cycles before (or a multiple of 4)

HIREX "classic" method

- 1. DUT sampling frequency being fixed, input frequency is set to a much lower value than f_s and $f_{s is?}$ a multiple of f_{in} leading to a significant number of points converted by sinewave input period.
 - a. Input sinewave frequency f_{in} and sampling frequency f_s must repond to:

- $f_{in}=f_s/m$ with m integer (m=128)

b. SEE detection: compare DUT output with previous output m clock time (or a multiple of m) before

European Space Agency

- 1. A conversion is considered in error when the output comparison with the reference exhibits a difference greater than a set threshold
 - 1. Threshold set is the minimum error value for which no detection occurs in the absence of beam
 - **1.** Typically 4LSBs for 14 and 16 bits (1 LSB ~ 100 uV)
- 2. 2048 conversions values before the detection trigger and 2048 after are recorded
 - 1. allows for checking the occurrence of successive conversions in error if any.

DUT Clock and Input Generation

- Excellent accuracy
- Control of phase shift

European Space Agency