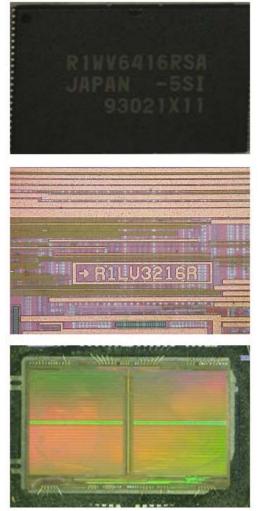


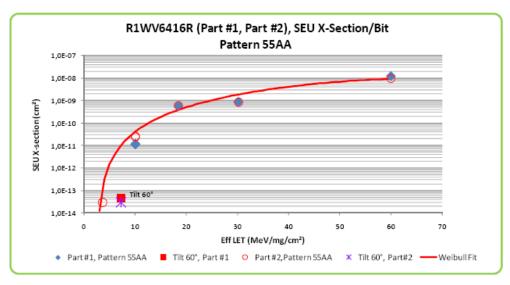
Radiation Final Presentation Days

Tested parts


Part Type	Manufacturer	Package	Function	Testing
R1WV6416RSA	Renesas	TSOP 48	SRAM 64M – 4M x 16	SEE + TID
MR4A16BCYS35	Everspin	TSOP 54	MRAM 16M – 1M x 16	SEE
MT29F128G08JAAAWP	Micron	TSOP 48	NAND FLASH 128G	SEE + TID
IS46TR16256AL-125K	ISSI	FBGA 96	DDR3 4G – 256M x 16	SEE, TID on going
MT41K256M16HA-125AIT	Micron	FBGA 96	DDR3 4G – 256M x 16	SEE, TID on going

SRAM memory Renesas 4 Mi x 16 (1/2)

- Part type: R1WV6416RSA-5SI
- Part description: 64 Mb static RAM organized as 4,194,304 word x 16 bit - 2 die of 32 Mb
- Manufacturer: Renesas
- Package: 48 pin TSOP I
- Date code: 0930
- Die dimensions: 9750 x 6080 μm
- SEE Testing: RADEF (Jyvaskyla / Finland), April 2010, 2 parts



SRAM memory Renesas 4 Mi x 16 (1/2)

- No SEL at Xe and 60° angle (LET of 120 MeV.cm2.mg-1) up to a fluence of 1E7 part.cm2.
- Some MBU observed (most MBU are 2 bits MBU).
- Thanks to descrambling analysis, MCU have been observed (worst case is 9 cells).

- **#** SEU saturation cross-section
 - △ 1.2E-8 cm2.bit-1
- - 2.5 MeV.cm2.mg-1

TID - SRAM: R1WV6416RSA (1/8)

- TID source: UCL, May and June 2013
- 11 samples tested (5xON, 5xOFF, 1xREF)
- Low End digital tester used (400 Mbps pattern rate)
- Static biasing for ON parts
- Irradiation steps and dose rate :

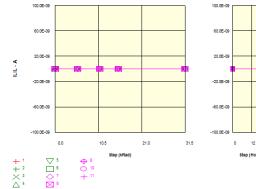
Irradiation Steps	Dose rate	Annealing steps	Temperature
krad (Si)	rad(Si)/h	Hours	Э°
0		-	Room
5	230	-	Room
10	230	-	Room
15	230	-	Room
30	230	-	Room
-	-	24h	Room
-	-	168h	100°C

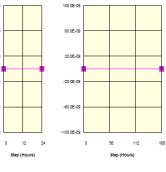
Allocation
Control
Biased ON
Biased OFF

- Results :
 - Biased ON samples:
 - ✓ One failed (SN 3)part on tRC parameter (Read Cycle Time) at 15krad and 30 krad.
 - ✓ All parts failed functional test starting at 15 krad.
 - ✓ All parts recover after 168h @ 100°C annealing.
 - ✓ No samples recovery observed after 24h and 168h annealing steps.
 - Biased OFF samples:
 - ✓ No fail parts at both irradiation steps and after 24 h @ room and 168 h annealing @ 100°C.

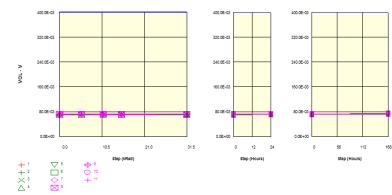
TID - SRAM: R1WV6416RSA ALTER (2/8)

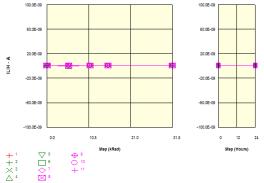
Symbol	Test Parameter	Test Conditions	Specification limits		Unit
			Min limit	Max limit	
ILIL	Input Leakage current	VCC = 3.6V, Vin= VSS	-1	1	μA
ILIH	Input Leakage current	VCC = 3.6V, Vin= VCC	-1	1	μA
ILOL	Output Leakage current	VCC=3.6V, BYTE# ≥ Vcc -0.2V CS1# =VIH, CS2 =VIL, OE# =VIH, WE# =VIL, LB# = UB# =VIH, VI/O =Vss	-1	1	μA
ILOH	Output Leakage current	VCC=3.6V, BYTE# ≥ Vcc -0.2V CS1# =VIH, CS2 =VIL, OE# =VIH, WE# =VIL, LB# = UB# =VIH, VI/O =VCC	-1	1	μA
VOL	Output Low Voltage	VDD = 3V IOL=2mA, BYTE# ≥ Vcc -0.2V	-	0.4	V
VOH	Output High Voltage	VDD = 3V IOH=-0.5mA, BYTE# ≥ Vcc -0.2V	2.4	-	V
ICC1	Average operating current	VCC= 3.6V, Min. cycle, II/O = 0mA BYTE# ≥ Vcc -0.2V, CS1# =VIL, CS2 =VIH, Others = VIH/VIL	-	60	mA
ICC2	Average operating current	VCC= 3.6V,Cycle =1µs, II/O = 0mA BYTE# ≥ Vcc -0.2V, CS1# ≤ 0.2V, CS2 ≥ VCC- 0.2V, VIH ≥ VCC-0.2V, VIL ≤ 0.2V	-	10	mA
ISB	Standby current	VCC= 3.6V BYTE# ≥ Vcc -0.2V, CS2 =VIL, other pin at level VCC or VSS	-	300	μA

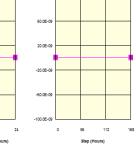

TID - SRAM: R1WV6416RSA ALTER (3/8)


Symbol	Test Parameter	Test Conditions	Specification limits		Unit
			Min limit	Max limit	
tRC	Read cycle time	GO NOGO test , VCC=3V, Isink=2mA (for vol=0.4V) Isource=2mA (for Voh=2.4V), VIL=0.4V VIH=2.4V		55	ns
tAA	Address access time	VCC=3V, Isink=2mA (for Vol=0.4V) Isource=2mA (for Voh=2.4V), VIL=0.4V VIH=2.4V		55	ns
tACS1	Chip select access time	VCC=3V, Isink=2mA (for Vol =0.4V) Isource=2mA (for Voh=2.4V), VIL=0.4V VIH=2.4V		55	ns
tACS2	Chip select access time	VCC=3V, Isink=2mA (for Vol =0.4V) Isource=2mA (for Voh=2.4V), VIL=0.4V VIH=2.4V		55	ns
tOE	Output enable to output valid	VCC=3V, Isink=2mA (for Vol =0.4V) Isource=2mA (for Voh=2.4V), VIL=0.4V VIH=2.4V		25	ns
tBA	LB#, UB# access time	VCC=3V, Isink=2mA (for Vol =0.4V) Isource=2mA (for Voh=2.4V), VIL=0.4V VIH=2.4V		55	ns
tAW	Address valid to end of write	VCC=3V, Isink=2mA (for Vol =0.4V) Isource=2mA (for Voh=2.4V), VIL=0.4V VIH=2.4V		50	ns
tWP	Write pulse width	VCC=3V, Isink=2mA (for Vol =0.4V) Isource=2mA (for Voh=2.4V), VIL=0.4V VIH=2.4V		40	ns
tAS	Address setup time	VCC=3V, Isink=2mA (for Vol =0.4V) Isource=2mA (for Voh=2.4V), VIL=0.4V VIH=2.4V		0	s
tDH	Data hold from write time	VCC=3V, Isink=2mA (for Vol =0.4V) Isource=2mA (for Voh=2.4V), VIL=0.4V VIH=2.4V		0	s
FCT_CHK	Checkerboard	VCC= 3.3V, f=10MHz, VIL=0V, VIH=3V, No Load	Go/Nogo	Go/Nogo	P/F
FCT_INVCHK	Checkerboard inverse	VCC = 3.3V, f=10MHz, VIL=0V, VIH=3V, No Load	Go/Nogo	Go/Nogo	P/F

TID - SRAM: R1WV6416RSA

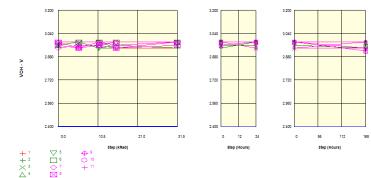

Parameter.: Input Leakage current : [[LIL/CS]] Test conditions.: VCC = 3.6V. Vin= VSS Unit.: A Spec Limit Min...: -1.0E-06 Spec Limit Sare represented in bold lines on the graphic.




Parameter..; Output Low Voltage : [VOLDQ1] Test conditions.; VDD = 3V IOL=2mA. BYTE# = Vcc -0.2V Unit..: V Spec Limit Max... 400.0E-03

Spec limits are represented in bold lines on the graphic.

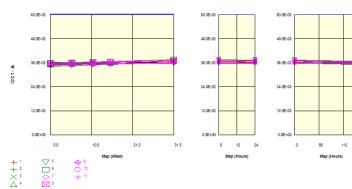
Parameter.: Input Leakage current : [LIH/CS] Test conditions.: VCC = 3.6V. <u>Vin</u>= VCC Unit.:A Spec Limit Mar...: 1.0E-06 Spec Limit Mar...: 1.0E-06 Spec limits are represented in bold lines on the graphic.



100.0E-0

Parameter..; Output High Voltage :[VOHDQ1] Test conditions.; VDD = 3V IOH=-0.5mA. BYTE# = Vcc -0.2V Unit.: V Spec Limit Min..; 2.400

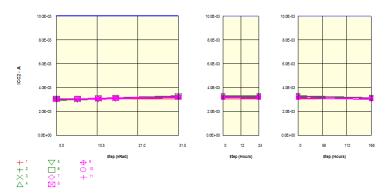
Spec limits are represented in bold lines on the graphic.



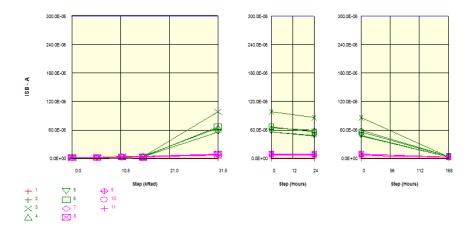
TID - SRAM: R1WV6416RSA (5/8)TECHNOLO

Parameter.: Average operating current : [CC] Test conditions : VCC= 3.6V. Min. cycle. II/O = 0mA. BYTE# = Vcc -0.2V. CS1# =VIL. CS2 =VIH. Others = VIH/VIL

Unit : A Spec Limit Max : 60.0E-03


Spec limits are represented in bold lines on the graphic.

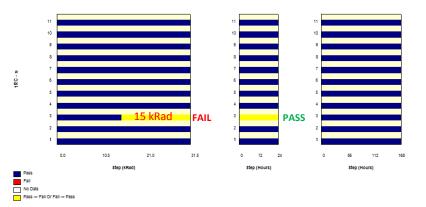
Parameter..; Average operating current : [ICC] Test conditions : VCC= 3.6V.Cycle =1µs. II/O = 0mA. BYTE# = Vcc -0.2V. CS1# = 0.2V. CS2 = VCC-0.2V. VIH = VCC-0.2V. VIL = 0.2V


Unit : A Spec Limit Max : 10.0E-03

Spec limits are represented in bold lines on the graphic.

Parameter : Standby current : Test conditions : VCC= 3.6V BYTE# = Vcc -0.2V. CS2 =VIL. other pin at level VCC or VSS Unit : A Spec Limit Max : 300.0E-06 Spec limits are represented in bold lines on the graphic.

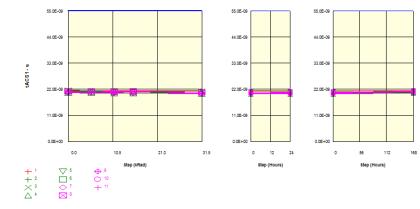
162


TID - SRAM: R1WV6416RSA

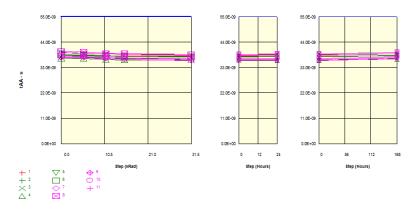
Parameter ; Read cycle time : tRQ

Test conditions.; GO NOGO test . VCC=3V. Isink=2mA (for vol=0.4V) Isource=2mA (for Voh=2.4V). VIL=0.4V VIH=2.4V Unit : s

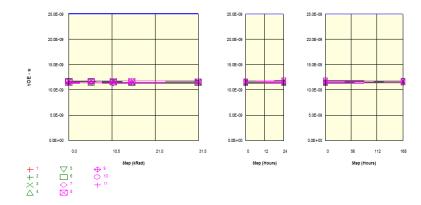
Spec Limit Max : 55.0E-09


Spec limits are represented in bold lines on the graphic.

Parameter : Chip select access time : tACS1


Test conditions.; VCC=3V. Isink=2mA (for vol=0.4V) Isource=2mA (for Voh=2.4V). VIL=0.4V VIH=2.4V Unit; s SpecLimi Max.; 55.0E-09

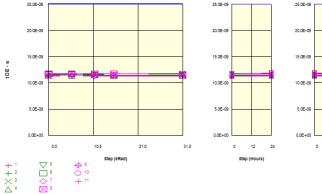
Spec limits are represented in bold lines on the graphic.

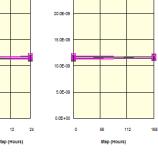

Parameter : Address access time : tAA

Test <u>conditions</u>; VCC=3V. Isink=2mA (for vol=0.4V) Isource=2mA (for Voh=2.4V). VIL=0.4V VIH=2.4V <u>Unit</u>; s Spec Limit <u>Max</u>; 55.0E-09 Spec limits are represented in bold lines on the graphic.

Parameter.; Output enable to output valid : [IOE] Test conditions.; VCC=3V. Isink=2mA (for vol=0.4V) Isource=2mA (for Voh=2.4V). VIL=0.4V VIH=2.4V

Unit ::s Spec Limit Max .: 25.0E-09 Spec limits are represented in bold lines on the graphic

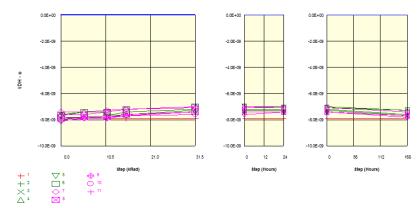

TID - SRAM: R1WV6416RSA R (7/8)TECHNOLOGY


Parameter : Output enable to output valid : [tOE]

Test conditions ; VCC=3V. Isink=2mA (for vol=0.4V) Isource=2mA (for Voh=2.4V). VIL=0.4V VIH=2.4V Unit : s

Spec Limit Max : 25.0E-09

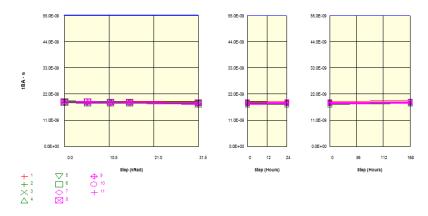
Spec limits are represented in bold lines on the graphic.



Parameter : Data hold from write time : tDF

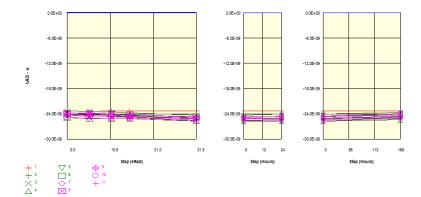
Test conditions : VCC=3V. Isink=2mA (for vol=0.4V) Isource=2mA (for Voh=2.4V), VIL=0.4V VIH=2.4V Unit : s

Spec Limit Max : 0.0E+00


Spec limits are represented in bold lines on the graphic.

Parameter : LB#. UB# access time : tBA

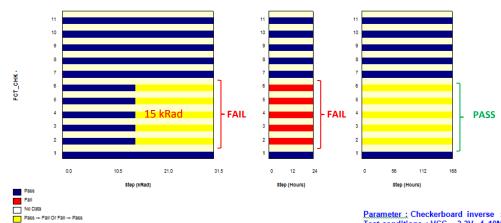
Test conditions ; VCC=3V. Isink=2mA (for vol=0.4V) Isource=2mA (for Voh=2.4V). VIL=0.4V VIH=2.4V Unit : s Spec Limit Max .: 55.0E-09


Spec limits are represented in bold lines on the graphic.

Parameter : Address setup time : [tAS]

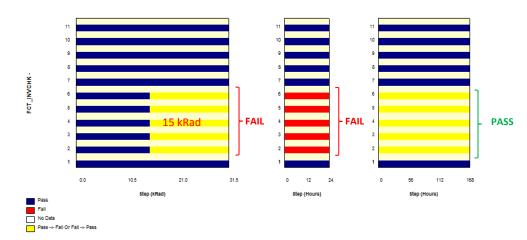
Test conditions : VCC=3V. Isink=2mA (for vol=0.4V) Isource=2mA (for Voh=2.4V). VIL=0.4V VIH=2.4V Unit : s

Spec Limit Max : 0.0E+00 Spec limits are represented in bold lines on the graphic.



TID - SRAM: R1WV6416RSA ALTER (8/8)

Parameter ; Checkerboard : FCT_CHK

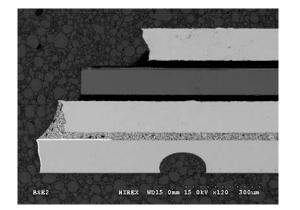

Test conditions : VCC= 3.3V. f=10MHz. VIL=0V. VIH=3V. No Load Unit :

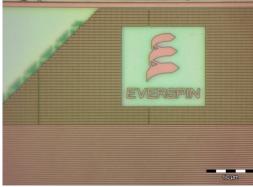
No spec limit specified.

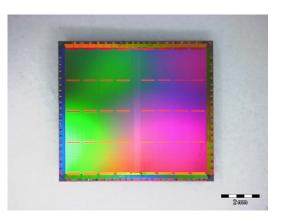
Parameter.; Checkerboard inverse : [FCT_INVCH] Test conditions.; VCC = 3.3V. f=10MHz. VIL=0V. VIH=3V. No Load Unit.:

No spec limit specified.

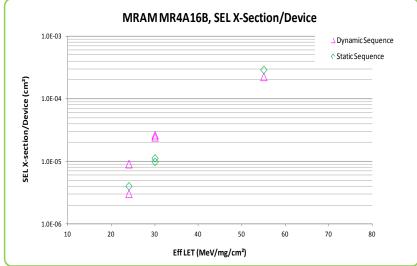
PASS



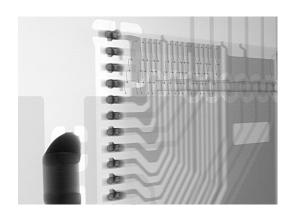

SEE - MRAM: MR4A14B (1/2)

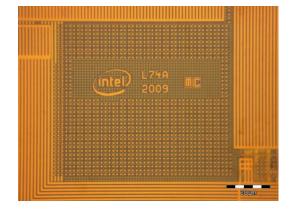


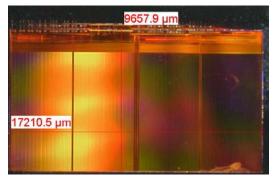
- Part type: MR4A16BCYS35
- Part description: 16Mbit MRAM
- Manufacturer: Everspin
- Package: 54-pin TSOP2
- Die dimensions: 8084 x 7300 μm
- SEE testing: TAMU, March 2013
- Irradiation exposure : Air



SEE - MRAM: MR4A14B (2/2)


2 test modes


- Static (no access while beam is on)
- Dynamic (read/write while beam is on)
- SEL at 24 MeV.mg⁻¹.cm⁻² and higher at room temperature Maximum observed cross-section of 2.9E⁻⁴ cm²/device
- Current steps at 30 MeV.mg⁻¹.cm⁻² and higher
- No SEU up to 10 MeV.mg⁻¹.cm⁻²
- Soft SEFI (power cycle not needed) starting at 10 MeV.mg⁻¹.cm⁻²
- Hard SEFI (power cycle needed) starting at 24 MeV.mg⁻¹.cm⁻²


SEE - Flash: MT29F128G08A (1/2)

- Part type: MT29F128G08A
- Part description: 32Gbit Flash memory
 (4 diagonal planets 2048 blacks 128 pages 8640 m 8 bit
- (4 dies, 2 planes, 2048 blocks, 128 pages, 8640 x 8 bit)
- Manufacturer: Micron technology
- Package: 54-pin TSOP2
- Die dimensions: 17.2 x 9.6 mm
- SEE testing: RADEF, April and September 2014



SEE - Flash: MT29F128G08A

3 test sequences

- Wait (no access while beam is on)
- Read (read while beam is on)
- Erase write (erase and write while beam is on)
- No SEL up to 60 MeV.mg⁻¹.cm⁻² room temperature (fluence 1E7 cm⁻²)
- SEU starting at 1.8 MeV.mg⁻¹.cm⁻²
 - Some last only 1 read
 - Some last few seconds / reads
 - Some stay (until erase)
- Large errors starting at 1.8 MeV.mg⁻¹.cm⁻²
 - One address on many pages
 - One page
 - One block

- TID source: GAMRAY, April and May 2014
- 11 samples tested (5xON, 5xOFF, 1xREF)
- High End digital tester used (800 Mbps pattern rate)
- Static biasing for ON parts
- Irradiation steps and dose rate :

Irradiation Steps	Dose rate	Annealing steps	Temperature
krad (Si)	rad(Si)/h	Hours	٥°
0		-	Room
7	260	-	Room
12	260	-	Room
18	260	-	Room
24	260	-	Room
48	260	-	Room
70	260	-	Room
100	260	-	Room
-	-	24h	Room
-	-	168h	100°C

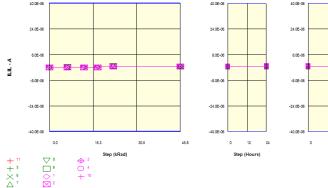
Serial Number	Allocation
11	Control
5	Biased ON
6	Biased ON
7	Biased ON
8	Biased ON
9	Biased ON
1	Biased OFF
2	Biased OFF
3	Biased OFF
4	Biased OFF
10	Biased OFF

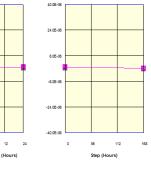
- Results :
 - Biased ON samples:
 - ✓ First functional failure observed at 48kRad(Si) step for all samples.
 - ✓ No samples recovery observed after 24h and 168h annealing steps.
 - Biased OFF samples:
 - ✓ First functional failure observed at 48kRad(Si) step on 4 samples.
 - ✓ No samples recovery observed after 24h + 168h annealing steps.
 - ✓ Nevertheless out of the 5xOFF parts, 1 sample failed after 168h annealing step @ 100°C.

PARAMETERS	SYMBOLS	TEST CONDITIONS	MIN	MAX	UNITS	
DC						
Continuity Neg	Cont_Neg	Iin=-100uA	-1.5	-0.2	V	
Input Leakage Current Low	ILIL	Vin=0V, VCC= VCCmax (3.6V)	-40.0E-6	40.0E-6	Α	
Input Leakage Current High	ILIH	Vin= VCC= VCCmax (3.6V)	-40.0E-6	40.0E-6	Α	
Output Leakage Current Low	ILOL	Vout=0V , Vcc = 3.6V DQ are disabled	-40.0E-6	40.0E-6	Α	
Output Leakage Current High	ILOH	Vout=VCCmax, Vcc = 3.6V DQ are disabled	-40.0E-6	40.0E-6	Α	
Output Low Voltage	VOL	IOL=2.1mA, Vcc = 3.3V	0.99		V	
Output High Voltage	VOH	IOH=-400uA Vcc = 3.3V		2.31	V	
Input Low Voltage	VIL	Vcc = 3.3V	0.66		V	
Input High Voltage	VIH	Vcc = 3.3V		2.64	V	
		Power supply (VCC =3.3V)				
Operating Current, Page Read with serial Access	ICC1	Read Active Current on Target 0, MODE5		100.0E-3	А	
Operating Current, Program	ICC2	Program Active Current on Target 0 lun 0 & Target 1 Lun 0, MODE5		200.0E-3	А	
Operating Current, Erase	ICC3	Erase Block 0 on Target 0 lun 0 & Target 1 Lun 0		200.0E-3	А	
Standby Current	ISB	CE/=VCC-0.2V, WP/=0V/VCC, VCC & VCCQ common		200.0E-6	Α	

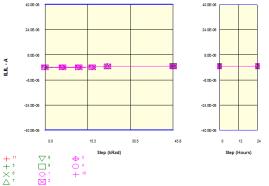
PARAMETERS	SYMBOLS	TEST CONDITIONS	MIN	MAX	UNITS	
AC (VCC=3.3V, Input Pulse Levels =0V to VCC , Input and Output Timing Levels=VCC/2, AC Measurements done on Block memory N°1) Mode 0						
Program Time	tProg	PROGRAM PAGE operation time GO NOGO		560.0E-6	s	
Block Erase Time	tBers	BLOCK ERASE operation time , GO NOGO		7.0E-3	s	
CLE Setup Time	tCLS			50.0E-9	S	
CLE Hold Time	tCLH			20.0E-9	s	
CE/ Setup Time	tCS			70.0E-9	s	
CE/ Hold Time	tCH	GO NOGO		20.0E-9	s	
WE/ Pulse Width	tWP	Note2		50.0E-9	S	
ALE Setup Time	tALS			50.0E-9	s	
ALE Hold Time	tALH			20.0E-9	S	
Data Setup Time	tDS			40.0E-9	S	
Data Hold Time	tDH			20.0E-9	S	
Write Cycle Time	tWC	Note2		100.0E-9	S	
WE/ High Hold Time	tWH	Note2, GONOGO		30.0E-9	S	
ALE to RE/ Delay	tAR,	GO NOGO		25.0E-9	S	
CLE to RE/ Delay	tCLR	GO NOGO		20.0E-9	s	
RE/ Pulse Width	tRP			50.0E-9	s	
Read Cycle Time	tRC			100.0E-9	S	
RE/ Access Time	tREA			40.0E-9	S	
WE High to Busy	tWB			200.0E-9	S	
CE/ Access Time	tCEA			100.0E-9	S	
RE/ High Hold Time	tREH	GO NOGO		30.0E-9	S	
WP/ High to WE/ Low	tWW	GO NOGO		100.0E-9	S	

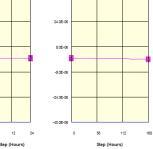
GΥ




PARAMETERS	SYMBOLS	TEST CONDITIONS	MIN	MAX	UNITS
		Functionality (VCC = 3.3V)			
Pattern FCT Checkerboard	Func_CHK	Erase Write , Read block 0 with pattern Checkerboard 0x55 & 0xAA	-	-	-
Pattern FCT /Checkerboard	Func_/CHK	Erase Write , Read block 0 with pattern invers Checkerboard 0xAA & 0x55	-	-	-

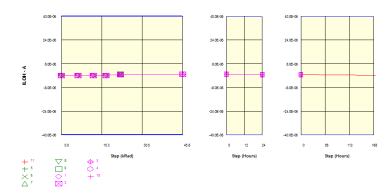
TID - Flash: MT29F128G08A (5/8) TECHNOLOGY


Parameter : Input Leakage Current Low : LILALE Test conditions : Vin=0V . VCC= VCCmax (3.6V) Unit : A Spec Limit Min .: -40.0E-06 Spec Limit Max : 40.0E-06 Spec limits are represented in bold lines on the graphic.

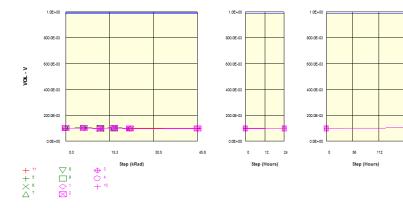


Parameter : Input Leakage Current Low : [LILIO[0] Test conditions : Vin=0V . VCC= VCCmax (3.6V)

Unit : A Spec Limit Min : -40.0E-06 Spec Limit Max : 40.0E-06 Spec limits are represented in bold lines on the graphic.

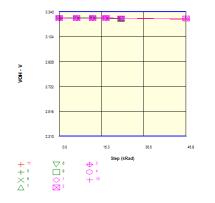


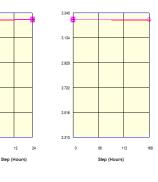
40.0E-0


Parameter : Output Leakage Current High : ILOHIO[0] Test conditions : Vout=VCCmax. Vcc = 3.6V DQ are disabled Unit : A

Spec Limit Min : -40.0E-06 Spec Limit Max : 40.0E-06 Spec limits are represented in bold lines on the graphic.

Parameter : Output Low Voltage : [VOLIO[0] Test conditions : IOL=2.1mA. Vcc = 3.3V Unit : V


Spec Limit Max 990.0E-03 Spec limits are represented in bold lines on the graphic.



Parameter : Output High Voltage :[VOHIO[0] Test conditions : IOH=-400uA Vcc = 3.3V Unit. V Spec Limit <u>Min</u> : 2.310 Spec Limit <u>Max</u> : 3.340

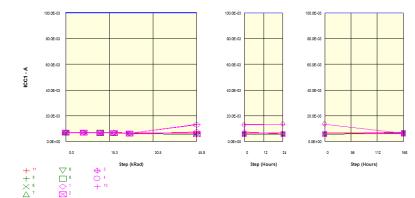
Spec limits are represented in bold lines on the graphic.

3.340

3.134

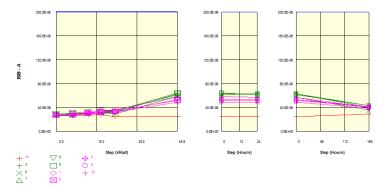
2.928

2.722


2.516

2,310

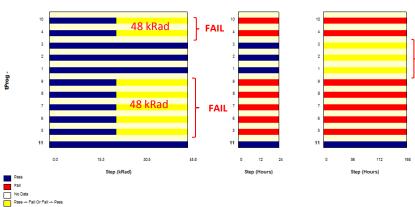
0


Parameter : Operating Current. Page Read with serial Access : [CC1] Test conditions : Read Active Current on Target 0. MODE5

Unit : A Spec Limit Max.: 100.0E-03 Spec limits are represented in bold lines on the graphic.

Parameter : Standby Current : [ISE] Test conditions : CE/=VCC-0.2V. WP/=0V/VCC. VCC & VCCQ common Unit: A Spec Limit Max.; 200.0E-06

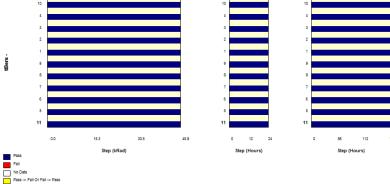
Spec limits are represented in bold lines on the graphic.



Parameter : Block Erase Time : tBers

Test conditions : BLOCK ERASE operation time . GO NOGO

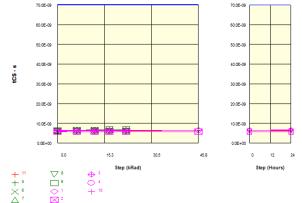
Parameter : Program Time : tProg Test conditions : PROGRAM PAGE operation time GO NOGO Unit :

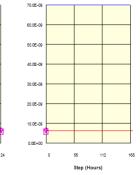

No spec limit specified.

Unit :

FAIL

No spec limit specified

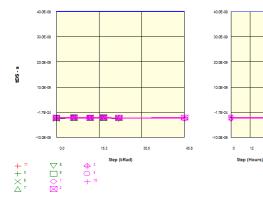


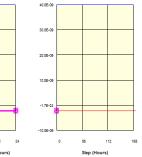

Parameter : CE/ Setup Time : tCS

Test conditions : Unit : s

Spec Limit Max : 70.0E-09

Spec limits are represented in bold lines on the graphic.

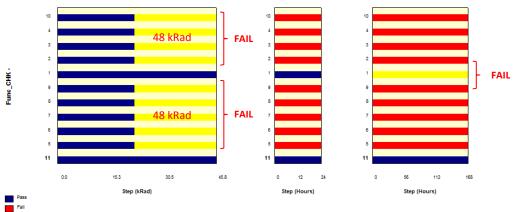




Parameter : Data Setup Time : tDS

Test conditions : Unit : s

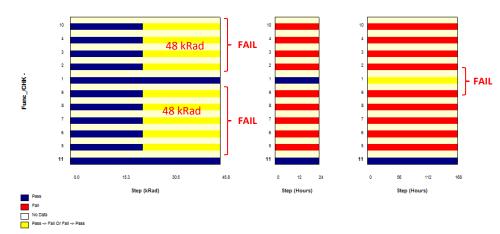
Spec Limit Max : 40.0E-09 Spec limits are represented in bold lines on the graphic.


Hirex Engineering a Company of Alter Technology - FT

Parameter : Pattern FCT Checkerboard : Func_CHK

Test conditions : Erase Write . Read block 0 with pattern Checkerboard 0x55 & 0xAA Unit :

No spec limit specified.



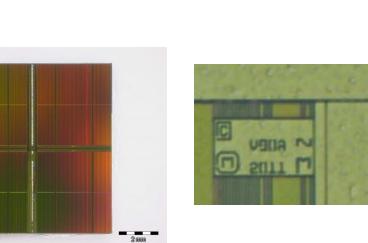
Fall
No Data
Pass -> Fall Or Fall -> Pass

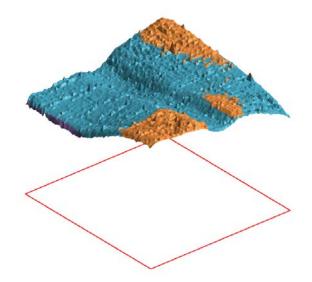
Parameter : Pattern FCT /Checkerboard : Func_/CHK

Test conditions .: Erase Write . Read block 0 with pattern invers Checkerboard 0xAA & 0x55 Unit.

No spec limit specified.

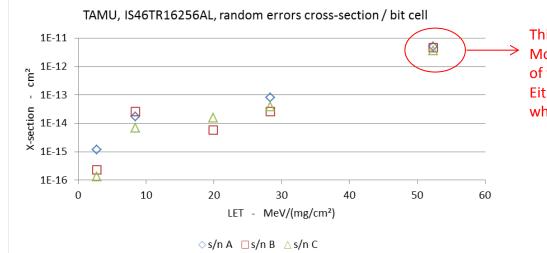
SEE - DDR3: IS46TR16256AL (1/4)



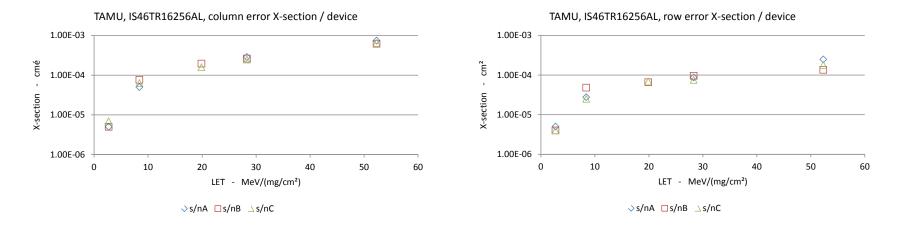

- Part type: IS46TR16256AL
- Part description: 4Gb DDR3 SDRAM
- Manufacturer: Integrated Silicon Solution, Inc
- Package: FBGA-96
- Die dimensions: 8.7 x 8.2 mm
- SEE testing:
 - TAMU, July 2014
- Irradiation performed in air exposure.

■ 0-10 ■ 10-20 ■ 20-30 ■ 30-40 ■ 40-50 ■ 50-60

Hirex Engineering a Company of Alter Technology - FT

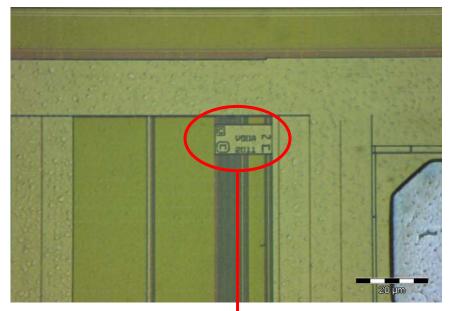

SEE - DDR3: IS46TR16256AL

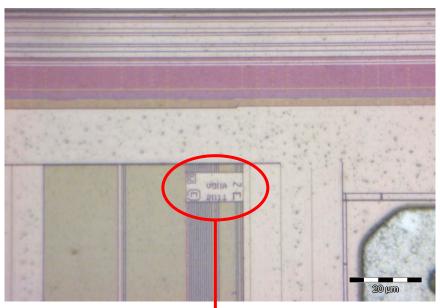
- One simple test sequence: 1 full array write followed by 2 full array reads, based on Xilinx "MIG 7 series" IP.
- Test done with a 800 MHz clock and 1.35 V.
 - Full array write is done in 200 μs.
 - Both full array read and compares are done in 1.5 s.
- No SEL up to 52.3 MeV.mg⁻¹.cm⁻² (fluence 1E7 cm⁻²) at room

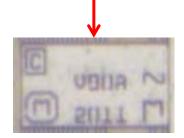

SEU

- Random errors, row errors and column errors starting at 2.7 MeV.mg⁻¹.cm⁻²
- Persistent errors (random single bit error) starting at 52.3 MeV.mg⁻¹.cm⁻²
 - Further failure analysis will be performed by the CNES.
- Most persistent errors cure after some time (annealing at 100 °C helps)
- Large errors recover using power cycling (sole implemented SEFI countermeasure)

This point is not representative. Most probably it's a combination of two phenomenon. Either a different ion or a ion for which energy has been modified.




SEE - MT41K256M16HA DDR3 (4/4)



IS46TR16256AL

MT41K256M16HA-125AIT

Same mask die !

Radiation Final Presentation Days

Thank You !