

Radiation Final Presentation Days

Tested parts TID focus

In the scope of the ESA study:

"Test Methods, Requirements, and Guidelines for Evaluation of Radiation Sensitivity of Analog to Digital Converters (ADC), Digital to Analog Converters (DAC) and Vertical Power MOSFETs".

A total dose radiation evaluation test of the following converters has been performed:

Part Type	Туре	Manufacturer	Package	Function	Testing
AD976SD/883	ADC	Analog Device	DIL 28	16 bits 200 kSps	TID + SEE
ADC128S102	ADC	National Semiconductor	SO 16 WB	12 bits, 8 channel	TID + SEE
RHF1401KS01	ADC	STM	SO 48 WB	14 bits	TID + SEE
DAC5675AHFG	DAC	Texas Instruments	CQFP 52	14 bits 400 MSps with LVDS	TID + SEE

ADC and DAC glossary

▶ INL: Integral Non linearity Error: For an ADC the deviations are measured at the transitions from one step to the next, and for the DAC they are measured at each step.

DNL: Differential Non linearity Error: The differential nonlinearity error (sometimes seen as simply differential linearity) is the difference between an actual step width (for an ADC) or step height (for a DAC) and the ideal value of 1 LSB.

ADC and DAC glossary

OE: Offset Error: The offset error is defined as the difference between the nominal and actual offset points. For an ADC, the offset point is the mid-step value when the digital output is zero, and for a DAC it is the step value when the digital input is zero.

GE: Gain Error: The gain error shown is defined as the difference between the nominal and actual gain points on the transfer function after the offset error has been corrected to zero. For an ADC, the gain point is the mid-step value when the digital output is full scale, and for a DAC it is the step value when the digital input is full scale.

ADC and DAC glossary

- SNR: Signal to Noise Ration (without Harmonics).
- > THD: Total Harmonic Distortion.
- SINAD: Signal to Noise And Distortion Ratio.
 Note: SINAD is often converted to effective number-of-bits (ENOB) using the relationship for the theoretical SNR of an ideal N-bit ADC

SFDR: Spurious Free Dynamic Range.

AD976SD/883 (1/10)

- Part type: AD976SD/883 (5962-9756401QXA)
- Part description: 16 bits 100kSps/200kSps BICMOS ADC
- Manufacturer: Analog Device
- Package: DIL 28
- Date code: 1306
- TID Testing: UCL, January and February 2012
- 11 samples tested (5xON, 5xOFF, 1xREF)
- Combining mixed mode tester and dedicated ADC/DAC tester
- Dynamic biasing for ON parts matching device applications scope
- Irradiation steps and dose rate (310 rad(Si)/hour):

Irradiation Steps Requested	Dose rate	Annealing steps	Temperature
0 krad(Si)		-	Room
10 krad(Si)	310 rad(Si)/h	-	Room
20 krad(Si)	310 rad(Si)/h	-	Room
30 krad(Si)	310 rad(Si)/h	-	Room
50 krad(Si)	310 rad(Si)/h	-	Room
100 krad(Si)	310 rad(Si)/h	-	Room
-	-	24h	Room
-	-	+144h	Room
-	-	168h	100°C

Serial Number (serialized by Hirex)	Allocation
1	Control
2	Biased ON
3	Biased ON
4	Biased ON
5	Biased ON
6	Biased ON
7	Biased OFF
8	Biased OFF
9	Biased OFF
10	Biased OFF
11	Biased OFF

AD976SD/883 (2/10)

AD976SD/883 (3/10)

Results :

• Biased ON samples:

- ✓ Electrical degradation starts at 20 kRad(Si) for bias ON parts only on ILINK/CS, BPZE, AP.
- ✓ All bias ON parts are FAIL after 30 kRad(Si). Some devices have even lost their functionality.
- Parts exhibit a positive recovery trend after annealing steps on almost all parameters except the dynamic ones such as INL, DNL, AP, SFDR, SINAD, THD etc. Nevertheless devices are still converting.

• Biased OFF samples:

- ✓ Electrical degradation starts at 100 kRad(Si) for bias OFF parts on a few parameters mostly dynamic ones such as INL, SFDR and AN.
- ✓ Bias OFF parts have recovered after annealing steps for AN parameters.
- ✓ Bias OFF parts haven't recovered after annealing steps for INL and SFDR parameters.

AD976SD/883 (4/10)

PARAMETERS	SYMBOLS	TEST CONDITIONS	MIN	MAX	UNITS
	STWBOLS	VANA=5V, VDIG=5V, VREF=2.5V			
Logic input high Voltage	Vih			2	V
Logic input low Voltage	Vil		0.8		V
Logic Input current	ILINL	Vih=5V, Vil=0V	-10.0E-6	10.0E-6	А
Logic Input current	ILINH	Vih=5V, Vil=0V	-10.0E-6	10.0E-6	А
Logic output high voltage	VOH	IOH=0.5mA	4		V
logic output low voltage	VOL	IOL=1.6mA		0.4	V
Three state output leakage	IOLTL		-5.00E-06	5.00E-06	А
Three state output leakage	IOLTH		-5.00E-06	5.00E-06	А
Power dissipation	PD			0.1	W

Note 1: Vin=-0.5dB, Fin=45 kHz, all measurement referred to a OdB (20Vpp) input signal. THD includes first six harmonics, Bandwidth = 50 kHz.

Note 2: Iol=1.6mA; Ioh=500uA, Vcrossover 2.1V, Vol=0.4V, Voh=4V, Vil=0.8V, Vih=2V

Note 3: Measurement decomposed in t9_DV & t9_Z. t9_DV: all data valid. T9_Z: all data Z.

Note 4: Functionality tested at 2 extreme values of t13.

Note 5: Measurement decomposed in t14_DV & t14_Z. t14_DV: all data valid. T14_Z: all data Z.

AD976SD/883 (5/10)

DADAMETEDS	SYMBOLS	TEST CONDITIONS	MIN	MAY		
PARAMETERS	STWDULS	VANA=5V, VDIG=5V, VREF=2.5V		IVIAA	UNITS	
Integral nonlinearity Positive	INL_Positive	All codes, fs=200ksps		2.5	LSB	
Integral nonlinearity Negative	INL_Negative	All codes, fs=200ksps	-2.5		LSB	
Differential nonlinearity	DNL	Go-noGo test, All codes, fs=200ksps, Minimum resolution for which "no missing codes" is guaranteed.	16 Bits		P/F	
Bipolar zero error	BPZE	Code = 32767.5, Ta=+25°C, fs=200ksps	-0.01	0.01	V	
Negative full scale error	AN	Code=0.5, Ta=+25°C, fs=200ksps	-0.25	0.25	%	
Positive full scale error	AP	Code=65535.5, Ta=+25°C, fs=200ksps	-0.25	0.25	%	
Signal-to-noise + distorsion	S/(N+D)	Fin=45KHz, fs=200ksps N ote 1	84		dB	
Total Harmonic Distorsion	THD	Fin=45KHz, fs=200ksps Note 1		-94	dB	
Spurious free dynamic range	SFDR	Fin=45KHz, fs=200ksps	94		dB	
Voltage reference output	Vref	Ta=+25°C	2.48	2.52	V	
Power supply rejection	PSR	Vdig=Vana=5V ⊑5%	-8	8	LSB	
Convert pulse width	t1	Note 2		50.0E-9	s	
Data valid after R//C low	t2	Note 2		4.0E-6	s	
/BUSY low delay	t3	Note 2		100.0E-9	s	
/BUSY low time	t4	Note 2		4.0E-6	s	
Conversion time	t7	GO NOGO		4.0E-6	s	
Acquisition time	t8	GO NOGO		1.0E-6	s	
Bus relinquish	t9	Note 2, Note 3	10.0E-9	100.0E-9	s	
Throughput time	t11	Note 2		5.0E-6	s	
R//C to /CS setup	t12	Note 2		10.0E-9	s	
Time between conversions	t13	GO NOGO, Note 4	5.0E-6	1.0E-3	s	
Bus access and byte delay	t14	Note 2, Note 5	10.0E-9	100.0E-9	s	

AD976SD/883 (6/10)

Parameter : Logic input high Voltage : [VIH/C § Test conditions : Unit : V

Spec Limit Max : 2.000

Spec limits are represented in bold lines on the graphic.

2,000

1,600

1.200

0.800

0.400

0.000

70.0E-08

54.0E-0

38.0E-0

22.0E-08

6.0E-08

-10.0E-08

Parameter : Logic Input current : [LINH/C § Test conditions : Vih=5V. Vil=0V

Unit.: A Spec Limit Min... -10.0E-06 Spec Limit Max... 10.0E-06 Spec limits are represented in bold lines on the graphic.

Parameter : Logic Input current : [LINL/CS]

Test conditions :: Vih=5V. Vil=0V Unit: A Spec Limit Min...: -10.0E-06 Spec Limit Max..: 10.0E-06 Spec Limits are represented in bold lines on the graphic.

Parameter : Logic output high voltage : [VOHD15] Test conditions : IOH=0.5mA

Unit: V Spec Limit Min... 4.000 Spec limits are represented in bold lines on the graphic.

AD976SD/883 (7/10)

Parameter : logic output low voltage :[VOLD0] Test conditions : IOL=1.6mA Unit : V

Spec Limit Max: 400.0E-03 Spec limits are represented in bold lines on the graphic

Parameter : Three state output leakage : [OLTLD1]

Test conditions : Unit: A Spec Limit Min.: -5.0E-06 Spec Limit Max.: 5.0E-06 Spec limits are represented in bold lines on the graphic.

Parameter : Power dissipation : PD

Test conditions : Unit : W

Spec Limit Max. 100.0E-03 Spec limits are represented in bold lines on the graphic.

Parameter : Three state output leakage : [OLTHD] Test conditions :

Unit.: A Spec Limit Min...; -5.0E-06 Spec Limit Max... 5.0E-06 Spec limits are represented in bold lines on the graphic

AD976SD/883 (8/10)

Parameter : Integral nonlinearity Positive : [INL_Positive] Test conditions : All codes Unit. LSB Spec Limit Max.: 2.500 Spec limits are represented in bold lines on the graphic.

> 2000.000 2000.000 1600.000 1600.000 LSB 1200.000 1200.000 Positive -800.000 800.000 ź 400.000 400.000 0.000 0.000 0.0 34.2 102.6 68.4 0 56 Step (kRad) Step (Hours) I SN A SN $+ \frac{\text{SN2}}{\text{SN3}}$ $\triangle \frac{\text{SN3}}{\text{SN4}}$ SN6 ○ SN10 _____ SN11 Š SNA

Parameter : Differential nonlinearity : [DNL]

Test conditions : All codes? Minimum resolution for which "no missing codes" is guaranteed. Unit: Bits Spec Limit Min.: 16

Spec limits are represented in bold lines on the graphic.

Parameter : Integral nonlinearity Negative : [INL_Negative] Test conditions : All codes Unit: LSB Spec Limit Min_ -2.500 Spec limits are represented in bold lines on the graphic.

Parameter : Bipolar zero error : BPZE Test conditions : Code = 32767.5. Ta=+25°C Unit : V

Spec Limit Min..: -10.0E-03 Spec Limit Max..: 10.0E-03 Spec limits are represented in bold lines on the graphic.

-45.00

-90.000

-135,000

-180.00

-225.00

AD976SD/883 (9/10)

Parameter : Positive full scale error : AP Test conditions : Code=65535.5. Ta=+25°C

Unit: % Spec Limit Min : -250.0E-03 Spec Limit Max : 250.0E-03 Spec limits are represented in bold lines on the graphic.

Parameter : Spurious free dynamic range : SFDR Test conditions : Fin=45KHz

Unit : dB Spec Limit Min .: 94.00 Spec limits are represented in bold lines on the graphic.

Parameter : Negative full scale error : AN

Test conditions : Code=0.5. Ta=+25°C Unit:% Spec Limit Min : -250.0E-03 Spec Limit Max : 250.0E-03 Spec limits are represented in bold lines on the graphic.

-300 OE-0 -1.1E+00 -1.9E+00 -2.7E+0 -3.5E+0 0 56 112 Step (Hours)

Parameter : Total Harmonic Distorsion : THD

Test conditions ; Fin=45KHz. Vin=-0.5dB, Fin=45KHz. all measurement referred to a 0dB (20Vpp) input signal. THD includes firs harmonics. Bandwidth =50kHz

Unit; dB

Spec Limit Max : -94.00 Spec limits are represented in bold lines on the graphic.

AD976SD/883 (10/10)

Parameter : Signal-to-noise + distorsion : SINAD

Test conditions ; Fin=45KHz. Vin=-0.5dB. Fin=45KHz. all measurement referred to a 0dB (20Vpp) input signal

90.00

81.00

72.00

63.00 4

54.00

45.00

0 56

<u>Unit</u>: dB

Spec Limit Min : 84.00

Spec limits are represented in bold lines on the graphic.

Parameter : Power supply rejection : [PSR] Test conditions : Vdig=Vana=5V +/-5% Unit: LSB

Spec Limit Min..: -8.000 Spec Limit Max..: 8.000 Spec limits are represented in bold lines on the graphic.

Parameter : Voltage reference output : [VREF] Test conditions : Ta=+25°C

Unit. V Spec Limit Min...; 2 480 Spec Limit Max...; 2.520 Spec limits are represented in bold lines on the graphic.

Parameter : Convert pulse width :[T1] Test <u>conditions</u> : lol=1.6mA; loh=500uA. <u>Vcrossover 2.1V.</u> Vol=0.4V. Voh=4V

Unit : s Spec Limit Max : 50.0E-09

Spec limits are represented in bold lines on the graphic.

ADC128S102 (1/8)

- Part type: ADC128S102WGMPR
- Part description: 12 bits 8 channels ADC
- Manufacturer: National Semiconductor
- Package: SO 16 WB
- Date code: 1317A
- TID Testing: UCL, May and June 2014
- 11 samples tested (5xON, 5xOFF, 1xREF)
- Combining mixed mode tester and dedicated ADC/DAC tester
- Dynamic biasing for ON parts matching device applications scope
- Irradiation steps and dose rate (310 rad(Si)/hour):

Irradiation Steps Requested	Dose rate	Annealing steps	Temperature
0 krad(Si)		-	Room
10 krad(Si)	310 rad(Si)/h	-	Room
20 krad(Si)	310 rad(Si)/h	-	Room
30 krad(Si)	310 rad(Si)/h	-	Room
50 krad(Si)	310 rad(Si)/h	-	Room
100 krad(Si)	310 rad(Si)/h	-	Room
-	-	24h	Room
-	-	+144h	Room
-	-	168h	100°C

Serial Number (serialized by Hirex)	Allocation
1	Control
2	Biased ON
3	Biased ON
4	Biased ON
5	Biased ON
6	Biased ON
7	Biased OFF
8	Biased OFF
9	Biased OFF
10	Biased OFF
11	Biased OFF

ADC128S102 (2/8)

ADC128S102 (3/8)

Results :

• Biased ON samples:

- ✓ Dynamic parameters seems to be more sensitive with a 3V PSU than 5V.
- Static parameters, especially current and power consumption are more sensitive with a 5V PSU than 3V.
 - Two FAIL parts (SN4 and 5) observed at 100 kRad(Si) step on DNL and IOZH @ 3V PSU
 - Same FAIL parts (SN4 and SN5) observed at 50 kRad(Si) step on Supply current IA and Power consumption (PC) in IDDLE mode @ 3V PSU.
 - Same FAIL parts (SN4 and SN5) observed at 50 kRad(Si) step on current an power consumption in IDDLE MODE @ 5V PSU.
 - Same FAIL parts (SN4 and SN5) observed at 100 kRad(Si) step on current an power consumption in NORMAL MODE @ 5V PSU.
 - Almost all FAIL parts have recovered after annealing except on Power consumption, nevertheless final value is very close from the limits.

• Biased OFF samples:

No failure for the bias OFF parts observed.

ADC128S102 (4/8)

DADAMETERS	SYMBOLS	TEST CONDITIONS	MIN	МАХ	LINUTE
PARAMETERS	STIVIBOLS	fsclk=16MHz, fsample=1MSPS, VA=VD=3V			UNITS
Integral Non linearity	INL_3V+_INX	Note 1	-1	1.1	LSB
Integral Non linearity	INL_3VINX	Note 1	-1	1.1	LSB
Differential Non linearity	DNL_3V+_INX	Note 1	-0.7	0.9	LSB
Differential Non linearity	DNL3V_INX	Note 1	-0.7	0.9	LSB
Offset Error	Voff_3V_INX	Note 1	-2.3	2.3	LSB
Full Scale Error	FSE_3V_INX	Note 1	-2	2	LSB
Signal to noise ratio	SNR_3V_INX	fIN=40.2kHz, -0.02dBFS Note 1	69		dB
Signal to noise + distorsion	SINAD_3V_INX	fIN=40.2kHz, -0.02dBFS Note 1	68		dB
Total Harmonic Distorsion	THD_3V_INX	fIN=40.2kHz, -0.02dBFS Note 1		-74	dB
Peak Harmonic or spurious noise	SFDR_3V_INX	fIN=40.2kHz, -0.02dBFS Note 1	75		dB
Effective Number of bit	ENOB_3V_INX	fIN=40.2kHz, -0.02dBFS Note 1	11.1		bits
Input Leakage Current Low	IIL_3V	Vin=0V	-1.0E-6	1.0E-6	Α
Input Leakage Current High	IIH_3V	Vin=3V	-1.0E-6	1.0E-6	Α
Input Leakage Current Low	lleak_INX_3V	VIN_X= 3V Note 1	-1.0E-6	1.0E-6	Α
Output Low Voltage	VOL_3V	lsink=1mA		0.4	V
Output High Voltage	VOH_3V	lsource=200µA	2.5		V
Input Low /High Voltage	VIL/VIH_3V	GO NOGO Test, VIL=0.8V, VIH=2.1V			P/F
Ouptut Leakage Current Z	IOZL_3V		-10.0E-6	10.0E-6	А
Ouptut Leakage Current Z	IOZH_3V		-10.0E-6	10.0E-6	А
Total supply Current Normal	IA_ID_NORM_3V	fSample=1MSPS, fIN=40kHz VIL=0V VIH=3V		1.5E-3	А
Total supply Current Shutdown	IA_ID_IDLE_3V	fSCLK=0kSPS		30.0E-6	А
Power Consumption Normal	PC_NORM_3V	fSample=1MSPS, fIN=40kHz		4.5E-3	W
Power Consumption Shutdown	PC_IDLE_3V	fSCLK=0kSPS		90.0E-6	W

Note 1: these measurements are done on each channel: X suffix indicates channel number => INX with X= 0 to 7

ADC128S102 (5/8)

DADAMETERS		TEST CONDITIONS	MAINI		
PARAMETERS	STMBOLS	fsclk=16MHz, fsample=1MSPS, VA=VD=5V	IVIIIN	WAX	UNITS
Integral Non linearity	INL+_5V_INX	Note 2	-1.25	1.4	LSB
Integral Non linearity	INL5V_INX	Note 2	-1.25	1.4	LSB
Differential Non linearity	DNL+_5V_INX	Note 2	-0.9	1.5	LSB
Differential Non linearity	DNL5V_INX	Note 2	-0.9	1.5	LSB
Offset Error	Voff_5V_INX	Note 2	-2.3	2.3	LSB
Full Scale Error	FSE_5V_INX	Note 2	-2	2	LSB
Signal to noise ratio	SNR_5V_INX	fIN=40.2kHz, -0.02dBFS Note 2	68.5		dB
Signal to noise + distorsion	SINAD_5V_INX	fIN=40.2kHz, -0.02dBFS Note 2	68		dB
Total Harmonic Distorsion	THD_5V_INX	fIN=40.2kHz, -0.02dBFS Note 2		-74	dB
Peak Harmonic or spurious noise	SFDR_5V_INX	fIN=40.2kHz, -0.02dBFS Note 2	75		dB
Effective Number of bit	ENOB_5V_INX	fIN=40.2kHz, -0.02dBFS Note 2	11.1		bits
Input Leakage Current Low	IIL_5V	Vin=0V	-1.0E-6	1.0E-6	А
Input Leakage Current High	IIH_5V	Vin=5V	-1.0E-6	1.0E-6	А
Input Leakage Current Low	lleak_INX_5V	VIN_X= 5V Note 2	-1.0E-6	1.0E-6	А
Output Low Voltage	VOL_5V	lsink=1mA		0.4	V
Output High Voltage	VOH_5V	Isource=200μA	4.5		V
Input Low /High Voltage	VIL/VIH_5V	GO NOGO Test, VIL=0.8V, VIH=2.4V			P/F
Ouptut Leakage Current Z	IOZL_5V		-10.0E-6	10.0E-6	А
Ouptut Leakage Current Z	IOZH_5V		-10.0E-6	10.0E-6	А
Total Sypply Current Normal	IA_ID_NORM_5V	fSample=1MSPS, fIN=40kHz, VIL=0V VIH=3.3V		3.1E-3	А
Total supply Current Shutdown	IA_ID_IDLE_5V	fSCLK=0kSPS		100.0E-6	А
Power Consumption Normal	PC_NORM_5V	fSample=1MSPS, fIN=40kHz		15.5E-3	W
Power Consumption Shutdown	PC_IDLE_5V	fSCLK=0kSPS		500.0E-6	W

Note 2: these measurements are done on each channel: X suffix indicates channel number => INX with X= 0 to 7

ADC128S102 (6/8)

Parameter : Integral Non linearity : INL+_3VIN0 Test conditions : INX => X= 0 to 7 Unit : LSB Spec Limit Min : -1.000 Spec Limit Max : 1.100

Spec limits are represented in bold lines on the graphic.

1,100

0.680

0.260

-0.160

-0.580

-1.00

Parameter : Integral Non linearity : INL+_5VIN0

Test conditions : INX => X= 0 to 7 Unit : LSB Spec Limit Min .: -1.250 Spec Limit Max : 1.400 Spec limits are represented in bold lines on the graphic.

1,400

0.87

0.340

-0.190

-0.720

-1.25

Parameter : Differential Non linearity : DNL+_3VIN0 Test conditions : INX => X= 0 to 7 Unit : LSB Spec Limit Min .: -0.700

Spec Limit Max : 0.900 Spec limits are represented in bold lines on the graphic.

Parameter : Differential Non linearity : DNL+_5VINQ Test conditions : INX => X= 0 to 7

Unit : LSB Spec Limit Min : -0.900 Spec Limit Max : 1.500 Spec limits are represented in bold lines on the graphic.

Hirex Engineering a Company of Alter Technology - FT

112

112 168

ADC128S102 (7/8)

Parameter : Ouptut Leakage Current Z : OZH_3V_DOUT Test conditions : Unit : A

Spec Limit Min : -10.0E-06 Spec Limit Max.: 10.0E-06 Spec limits are represented in bold lines on the graphic

Parameter : Total supply Current Shutdown : [A_ID_IDLE_3V] Test conditions : fSCLK=0kSPS

Unit : A Spee Limit Max : 20.0E

Spec Limit Max.: 30.0E-06 Spec limits are represented in bold lines on the graphic.

Parameter : Ouptut Leakage Current Z : IOZH_5V_DOU1

Test conditions : Unit A Spec Limit Min.: -10.0E-06 Spec Limit Max.: 10.0E-06 Spec Limit are represented in bold lines on the graphic

Parameter : Total supply Current Shutdown : IA_ID_IDLE_5V] Test conditions : fSCLK=0kSPS Unit : A

Spec Limit Max., 100.0E-06 Spec limits are represented in bold lines on the graphic.

ADC128S102 (8/8)

Parameter : Power Consumption Shutdown : PC_IDLE_3V Test conditions : fSCLK=0kSPS Unit : W

Spec Limit Max : 90.0E-06 Spec limits are represented in bold lines on the graphic.

Parameter : Power Consumption Normal : PC_NORM_3V Test conditions : fSample=1MSPS. fIN=40kHz Unit : W

Spec Limit Max : 4.5E-03

Spec limits are represented in bold lines on the graphic

0

Parameter : Power Consumption Shutdown : PC_IDLE_5V Test conditions : fSCLK=0kSPS Unit : W Spec Limit Max : 500.0E-06 Spec limits are represented in bold lines on the graphic.

Parameter : Power Consumption Normal : PC_NORM_3V Test conditions : fSample=1MSPS. flN=40kHz

Unit : W Spec Limit Max : 4.5E-03 Spec limits are represented in bold lines on the graphic.

112

RHF1401KS01 (1/12)

- Part type: RHF1401KS01
- Part description: 14 bits 20 MSps radiation hardened ADC
- Manufacturer: STMicroelectronics
- Package: SO 48 WB
- Date code: 31228A
- TID Testing: UCL, June and July 2013
- 11 samples tested (5xON, 5xOFF, 1xREF)
- Combining mixed mode tester and dedicated ADC/DAC tester
- Dynamic biasing for ON parts matching device applications scope
- Irradiation steps and dose rate (200 rad(Si)/hour):

Irradiation Steps Requested	Dose rate	Annealing steps	Temperature
krad (Si)	rad(Si)/h	Hours	С°
0		-	Room
10	200	-	Room
20	200	-	Room
30	200	-	Room
50	200	-	Room
100	200	-	Room
-	-	24	Room
-	-	168	100

Serial Number	Allocation
11	Control
1	Biased ON
12	Biased ON
13	Biased ON
14	Biased ON
15	Biased ON
16	Biased OFF
17	Biased OFF
18	Biased OFF
19	Biased OFF
20	Biased OFF

RHF1401KS01 (2/12)

RHF1401KS01 (3/12)

Results :

- Biased ON samples:
 - ✓ All parameters both STATICS, DYNAMICS and AC remain within the limits.
 - ✓ No rebound after annealing.

• Biased OFF samples:

- ✓ All parameters both STATICS, DYNAMICS and AC remain within the limits.
- ✓ No rebound after annealing.

RHF1401KS01 (4/12)

PARAMETERS	SYMBOLS	TEST CONDITIONS (See note)	MIN	MAX	UNITS
Analog supply current	Aicc	Fs = 20Msps. Fin = 10MHz			Α
Digital supply current	Dicc	Fs = 20Msps. Fin = 10MHz			А
Digital buffer supply current	<u>lccbi</u>	Fs = 20Msps. Fin = 10MHz. OEB set to Vil			Α
Digital buffer supply current	<u>lccbe</u>	Fs = 20Msps. Fin = 10MHz. OEB set to Vil			Α
Digital buffer supply current	lccbez	Fs = 20Msps. Fin = 10MHz. OEB set to Vih			Α
Digital buffer supply current	<u>lccbiz</u>	Fs = 20Msps. Fin = 10MHz. OEB set to Vih			А
Polarization Voltage	<u>Vpol</u>	Fs = 20Msps. Fin = 10MHz			V
Input Common Mode Voltage	Vincm	Fs = 20Msps. Fin = 10MHz	400.0	500.0	mV
Top internal reference voltage	<u>Vrefp</u>	Fs = 20Msps. Fin = 10MHz. Vrefm = GND	760.0	950.0	mV
Logic "1" voltage	Voh OR	Fs = 20Msps. Fin = 10MHz. OEB set to Vil & IOL = 10 μ A	2.250		V
Logic "1" voltage	Voh	Fs = 20Msps. Fin = 10MHz. OEB set to Vil & IOL = 10µA	2.250		V
Logic "1" voltage	Voh DR	Fs = 20Msps. Fin = 10MHz. OEB set to Vil & IOL = 10μ A	2.250		V
Logic "0" voltage	<u>Vol OR</u>	Fs = 20Msps. Fin = 10MHz. OEB set to Vil & IOL = -10µA		250.0	mV
Logic "0" voltage	Vol	Fs = 20Msps. Fin = 10MHz. OEB set to Vil & IOL = -10µA		250.0	mV
Logic "0" voltage	Vol DR	Fs = 20Msps. Fin = 10MHz. OEB set to Vil & IOL = -10µA		250.0	mV
High impedance leakage current	lozh OR	Fin = 0MHz. Rpol = 45kOhms. OEB set to Vih	-15.0	15.0	μA
High impedance leakage current	lozh	Fin = 0MHz. Rpol = 45kOhms. OEB set to Vih	-15.0	15.0	μA
High impedance leakage current	lozh DR	Fin = 0MHz. Rpol = 45kOhms. OEB set to Vih	-15.0	15.0	μA
High impedance leakage current	lozl OR	Fin = 0MHz. Rpol = 45kOhms. OEB set to Vih	-15.0	15.0	μA
High impedance leakage current	lozl	Fin = 0MHz. Rpol = 45kOhms. OEB set to Vih	-15.0	15.0	μA
High impedance leakage current	<u>lozl DR</u>	Fin = 0MHz. Rpol = 45kOhms. OEB set to Vih	-15.0	15.0	μA

RHF1401KS01 (5/12)

PARAMETERS	SYMBOLS	TEST CONDITIONS (See note)	MIN	MAX	UNITS
Offset error @ Vin = -1dBFS	<u>OE</u>	Fs = 20Msps. Fin = 15MHz			%
Gain error @ Vin = 1.9V	<u>GE</u>	Fs = 20Msps. Fin = 15MHz			%
Differential non linearity	<u>DNLP</u>	Fs = 20Msps. Fin = 15MHz			LSB
Differential non linearity	DNLM	Fs = 20Msps. Fin = 15MHz			LSB
Integral non linearity	INLP	Fs = 20Msps. Fin = 15MHz			LSB
Integral non linearity	INLM	Fs = 20Msps. Fin = 15MHz			LSB
Spurious free dynamic range	<u>SFDR</u>	Fs = 20Msps. Fin = 15MHz. Vin = -1dBFS			dBc
Signal to noise ratio	<u>SNR</u>	Fs = 20Msps. Fin = 15MHz. Vin = -1dBFS			dBFS
Total harmonics distortion	<u>THD</u>	Fs = 20Msps. Fin = 15MHz. Vin = -1dBFS			dB
Signal to noise and distortion ratio	SINAD	Fs = 20Msps. Fin = 15MHz. Vin = -1dBFS			dB
Effective number of bits	ENOB	Fs = 20Msps. Fin = 15MHz. Vin = -1dBFS			bits

Note:

Internal REFP (REFMODE=0) & INCM, Rpol = 45 kOhm, AVcc = DVcc = Vccbe = Vccbi = 2.5V unless otherwise specified

RHF1401KS01 (6/12)

Parameter: Analog supply current: [Aic] Test conditions: Fs = 20Msps. Fin = 10MHz Unit: A

No spec limit specified.

150.0E-03

120.0E-03

90.0E-03

60.0E-03

30.0E-03

0.0E+00

0

Parameter : Digital supply current :[Dic] Test conditions : Fs = 20Msps. Fin = 10MHz Unit: A No spec limit specified.

Parameter : Digital buffer supply current : [[ccb] Test conditions : Fs = 20Msps. Fin = 10MHz. OEB set to Vil Unit : A No spec limit specified.

Parameter.: Polarization Voltage :[Vpo] Test conditions : Fs = 20Msps. Fin = 10MHz Unit.: V No specified.

1.500

1.200

0.900

0.600

0.300

Hirex Engineering a Company of Alter Technology - FT

March 2015

RHF1401KS01 (7/12)

Unit: V

Spec Limit Min : 760.0E-03 Spec Limit Max: 950.0E-03

950.0E-00

912.0E-03

874.0E-03

836.0E-

760.0E-00

 $\frac{1}{1}$

× 12 ∆ 13

0.0

 ∇ 14 4

15

♦ 16
№ 17

/refo

Parameter : Input Common Mode Voltage : Vincm Test conditions : Fs = 20Msps. Fin = 10MHz

Unit : V Spec Limit Min : 400.0E-03 Spec Limit Max : 500.0E-03 Spec limits are represented in bold lines on the graphic.

Parameter : High impedance leakage current : ozhD8 Test conditions ; Fin = 0MHz. Rpol = 45kOhms. OEB set to Vih Unit: A

Spec Limit Min .: -15.0E-06 Spec Limit Max : 15.0E-06 Spec limits are represented in bold lines on the graphic.

798 0E-03

Step (kRad)

67.8

33.9

950.0E-03

Parameter : Logic "0" voltage : Vol DR

Spec Limit Max : 250.0E-03

17

101.7

950.0E-03

Step (Hours)

∆ 13

Ó 19

+ 20

Parameter : Top internal reference voltage : Vrefp

Spec limits are represented in bold lines on the graphic.

Test conditions : Fs = 20Msps. Fin = 10MHz. Vrefm = GND

Test conditions : Fs = 20Msps. Fin = 10MHz. OEB set to Vil & IOL = -10µA Unit : V

Spec limits are represented in bold lines on the graphic.

168

56

112

RHF1401KS01 (8/12)

Parameter.; Offset error @ Vin = -1dBFS:[Of] Test conditions : Fs = 20Msps. Fin = 15MHz Unit.; %

No spec limit specified.

Parameter.; Gain error @ Vin = 1.9V :[G6] Test conditions : Fs = 20Msps. Fin = 15MHz Unit.; % No spec limit specified.

Parameter : Differential non linearity :[DNLF] Test conditions : Fs = 20Msps. Fin = 15MHz Unit : LSB No spec limit specified.

1.000

0.800

0.600

0.400

0.200

0.00

Parameter: Integral non linearity: [NLF] Test conditions : Fs = 20Msps. Fin = 15MHz Unit: LSB

No spec limit specified.

1.000

0.60

0.20

-0.200

-0.600

-1.00

0

RHF1401KS01 (9/12)

Parameter : Spurious free dynamic range : SFDR Test conditions : Fs = 20Msps. Fin = 15MHz. Vin = -1dBFS Unit: dBc No spec limit specified

100.00

90.00

80.00

70.00

60.00

50.00

0

84

Step (Hours)

Parameter : Signal to noise ratio : [SNR] Test conditions : Fs = 20Msps. Fin = 15MHz. Vin = -1dBFS Unit: dBFS No spec limit specified.

80.00

74.00

68.00

62.00

56.00

50.00

Parameter : Total harmonics distortion : THD Test conditions : Fs = 20Msps. Fin = 15MHz. Vin = -1dBFS Unit∴dB No spec limit specified.

Parameter : Signal to noise and distortion ratio : SINAD Test conditions : Fs = 20Msps. Fin = 15MHz. Vin = -1dBFS Unit: dB

No spec limit specified

Ň 17

Hirex Engineering a Company of Alter Technology - FT

ΕN

GINEERING

A company of ALTER TECHNOLOG

RHF1401KS01 (11/12)

INL-SN1-Annealing 168h Room

INL – SN1 – Annealing 168h 100°C

RHF1401KS01 (12/12)

Dynamic Tests - SN1 - Annealing 168h Room

Dynamic Tests - SN1 - Annealing 168h 100°C

DAC5675AHFG (1/x)

- Part type: DAC5675AHFG
- Part description: 14 bits 400 MSps with LVDS DAC
- Manufacturer: Texas Instruments
- Package: CQFP 52
- Date code: 1233A
- TID Testing: UCL, November and December 2014
- 11 samples tested (5xON, 5xOFF, 1xREF)
- Combining mixed mode tester and dedicated ADC/DAC tester
- Dynamic biasing for ON parts matching device applications scope
- Irradiation steps and dose rate (310 rad(Si)/hour):

Irradiation Steps Requested	Dose rate Annealing steps		Temperature	
krad (Si)	rad(Si)/h	Hours	°C	
0	-	-	Room	
10	310	-	Room	
20	310	-	Room	
30	310	-	Room	
50	310	-	Room	
100	310		Room	
-	-	24h	Room	
-	-	144h	Room	
-	-	168h	100°C	

Serial Number (serialized by Hirex)	Allocation		
1	Control		
2	Biased ON		
3	Biased ON		
4	Biased ON		
5	Biased ON		
6	Biased ON		
7	Biased OFF		
8	Biased OFF		
9	Biased OFF		
10	Biased OFF		
11	Biased OFF		

DAC5675AHFG (2/x)

DAC5675AHFG (3/x)

DAC5675AHFG (4/x)

Results :

- Biased ON samples:
 - ✓ All parameters both STATICS, DYNAMICS and AC remain within the limits.
 - ✓ No rebound after annealing.

• Biased OFF samples:

- ✓ All parameters both STATICS, DYNAMICS and AC remain within the limits.
- ✓ No rebound after annealing.

DAC5675AHFG (5/x)

DADAMETEDS	SYMBOLS		Limits							
FARAMETERS	STWIDOLS	TEST CONDITIONS	MIN	MAX	UNITS					
Linear Electrical specifications (Dvdd=Avdd=3.3V, 50 MSPS, I _{O(FS)} = 20 mA unless otherwise specified)										
Integral Non Linearity Positive	INL+	EXTIO Intern	-4	4.6	LSB					
Integral Non Linearity Negative	INL-	EXTIO Intern	-4	4.6	LSB					
Differential Non Linearity Positive	DNL+	EXTIO Intern	-2	2.2	LSB					
Differential Non Linearity Negative	DNL-	EXTIO Intern	-2	2.2	LSB					
Gain Error	Eg	EXTIO Extern	-10	10	%FSR					
AC Electrical specifications (Dvdd=Avdd=3.3V, I _{O(FS)} = 20 mA, 50MSPS)										
Total harmonic distortion	THD	EXTIO Intern			dBc					
Spurious free dynamic range	SFDR	EXTIO Intern			dBc					
Signal to noise ratio	SNR	EXTIO Intern			dBc					
DC Electrical specifications (Dvdd=Avdd=3.3V, 50 MSPS, I _{O(FS)} = 20 mA unless otherwise specified)										
Analog Supply Current	lavdd	EXTIO Intern, Square @1Mhz		148	mA					
Digital Supply Current	ldvdd	EXTIO Intern, Square @1Mhz		130	mA					
Reference Voltage	VEXTIO	EXTIO Intern, Square @1Mhz	1.17	1.3	V					
Digtal specifications (Dvdd=Avdd=3.3V unless otherwise specified)										
High-level input current	Ін	Sleep input	-100	100	μA					
Low-level input current	lι∟	Sleep input	-10	10	μA					

DAC5675AHFG (6/x)

Parameter : Integral Non Linearity Positive : NL+

Test conditions : Dvdd=Avdd=3.3V. 50 MSPS. IO(FS)= 20 mA. EXTIO Intern Unit : LSB

Spec Limit Min .: -4.000 Spec Limit Max : 4.600

Spec limits are represented in bold lines on the graphic

Parameter : Gain Error : Eg

Test conditions : Dvdd=Avdd=3.3V. 50 MSPS. IO(FS)= 20 mA. EXTIO Extern Unit: %FSR

Spec Limit Min : -10.000

Spec Limit Max : 10.000

Spec limits are represented in bold lines on the graphic.

Parameter : Differential Non Linearity Positive : DNL+ Test conditions : Dvdd=Avdd=3.3V. 50 MSPS. IO(FS)= 20 mA. EXTIO Intern

Unit : LSB Spec Limit Min :: -2.000 Spec Limit Max : 2.200 Spec limits are represented in bold lines on the graphic.

Parameter : Total harmonic distortion : THD Test conditions : Dvdd=Avdd=3.3V. 50 MSPS. IO(FS)= 20 mA. EXTIO Intern Unit : dBc

No spec limit specified.

112

DAC5675AHFG (7/x)

Parameter : Spurious free dynamic range : SFDR

Test conditions : Dvdd=Avdd=3.3V. 50 MSPS. IO(FS)= 20 mA. EXTIO Intern Unit; dBc

No spec limit specified.

112

56

Step (Hours

Parameter : Analog Supply Current : lavdd Test conditions : Dvdd=Avdd=3.3V. 50 MSPS. IO(FS)= 20 mA. EXTIO Intern

Unit : A

Spec Limit Max : 148.0E-03

Spec limits are represented in bold lines on the graphic.

Parameter : Signal to noise ratio : SNR Test conditions : Dvdd=Avdd=3.3V. 50 MSPS. IO(FS)= 20 mA. EXTIO Intern Unit: dBc No spec limit specified.

Parameter : Digital Supply Current : [dvdd] Test conditions : Dvdd=Avdd=3.3V. 50 MSPS. IO(FS)= 20 mA. EXTIO Intern

Unit : A Spec Limit Max : 130.0E-03 Spec limits are represented in bold lines on the graphic.

56 112 168 112

DAC5675AHFG (8/x)

56 112

Step (Hours)

Parameter : Reference Voltage : VEXTIO

Test conditions : Dvdd=Avdd=3.3V. 50 MSPS. IO(FS)= 20 mA. EXTIO Intern

Spec limits are represented in bold lines on the graphic.

Parameter : High-level input current : lih_Sleep

Test conditions : Dvdd=Avdd=3.3V Unit : A

Spec Limit Min..: -100.0E-06 Spec Limit Max.: 100.0E-06 Spec limits are represented in bold lines on the graphic.

Parameter : Low-level input current : [li_Slee] Test conditions : Dvdd=Avdd=3.3V Unit: A Spec Limit Min.: -10.0E-06 Spec Limit Max.: 10.0E-06

1.300

1.274

1.222

1.196

1,170

0

6 (#)

1.248

Spec limits are represented in bold lines on the graphic.

Radiation Final Presentation Days

Thank You !