

Glenair Ruggedized Photonic Components for Aerospace Applications

Dr Ron Logan, Davinder Basuita

Outline

Problem

 Space environmental requirements for photonic components in fiberoptic data-transmission applications are difficult to meet

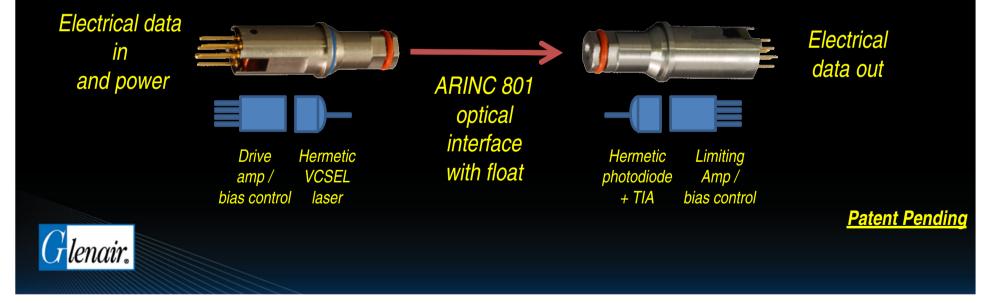
Solution

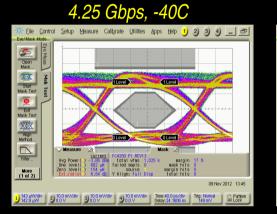
- Ruggedized optical transceivers with high radiation tolerance
- Approach
 - Apply rigorous aerospace design & manufacturing processes
- Results
 - Performance and qualification data
- Summary and conclusions

Requirements for Aerospace Photonic Components

- More severe environments than for commercial photonic components
 - Operating temperature range: -40C to +85C or wider
 - Storage temperature: -55C to +125C, 1000 cycles
 - High levels of mechanical shock and vibration while operating
 - High humidity environments (pre-launch)
 - Operation in vacuum (outgassing)
 - Radiation: gamma, neutron / proton, heavy ion SEE
- Commercial manufacturers do not address these requirements very well
 - Do not have required capabilities, engineering expertise, qualification data
 - Quantities are low (10's-100's) compared to commercial datacom/telecom (millions)
 - Program lifecycles are very long therefore obsolescence is an issue

Solution: Radiation-Tolerant Aerospace Transceivers


- Apply MIL / aerospace design and manufacturing practices
 - Use best-available COTS photonic and electronic device technology
 - Ruggedize the packaging
 - Manage parts obsolescence issues
- "Form follows function"
 - Commercial standard form-factors are not required for aerospace
 - Design products to survive the environment
 - Select components with inherently high radiation tolerance
 - Simple design with no microprocessors or EEPROMs
 - GaAs lasers / photodiodes; SiGe / CMOS driver ICs
- Maintain electrical and optical interoperability with commercial products
 - Eases integration, testing


Size #8 Opto-Electronic Contact

- Fiber-Optic transmitter and receiver in a size #8 contact
- Simplest possible design
 - No microprocessor or EEPROMs
 - Hermetic GaAs laser and photodiode; non-hermetic SiGe / CMOS drive and limiting amps

Size #8 Optoelectronic Contacts 100% Production Test

 4.25
 Gbps, +90C

 Elie Control Setup Measure Calibrate Littlites Apps Help 1 2 3 3 1 - 2

current -3,51 dBn

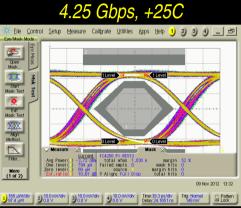
Avg Power(One level(Zero level(fotal wfms failed smpls

1.044 k margin 0 maskhits margin hits

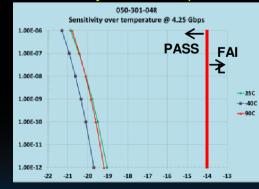
09 Nov 2012 14:02

Open Mask..

Start Mask Tes


Exit Mask Tes

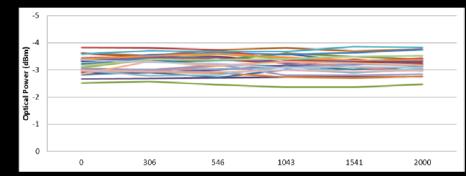
Xex

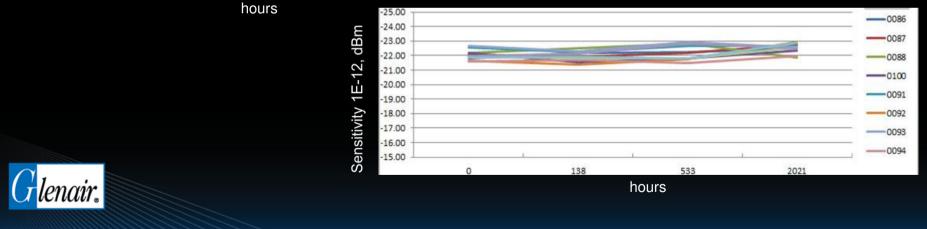

Align Method.

Filter...

More (1 of 2)

RX Sensitivity @ 4.25 Gbps vs Temp


Automated Temp Cycle Test System



Accelerated Aging – Size 8 Optoelectronic Contacts

Output power and receiver sensitivity over 2000 hours at 85C

Hardware & Firmware for the Tests Neutron Irradiation Test Gamma Irradiation Test Summary & Outlook

Results Glenair 050-301

	Experiment in gamma cell II						
	Dose(krad)	Time(m	in)	Accumulate Dose(krad)		Status	
Step 1	168.3	187		168.3		✓	
Neutron irradiation at room temperature 25°C							
	Dose(neutron/cm ⁻²) Ti		Tin	$ne(s) + 13s^1$		Accumulated Dose	Errors

Step 1	$62.5 \cdot 10^{10}$	2718 + 13	$62.5 \cdot 10^{10}$	No
Step 2	$62.5 \cdot 10^{10}$	2718 + 13	$125 \cdot 10^{10}$	No
Step 3	$125 \cdot 10^{10}$	5435 + 13	$250 \cdot 10^{10}$	No

Y. Bai | Irradiation of the Optical Transmitters Test Results

ТШП

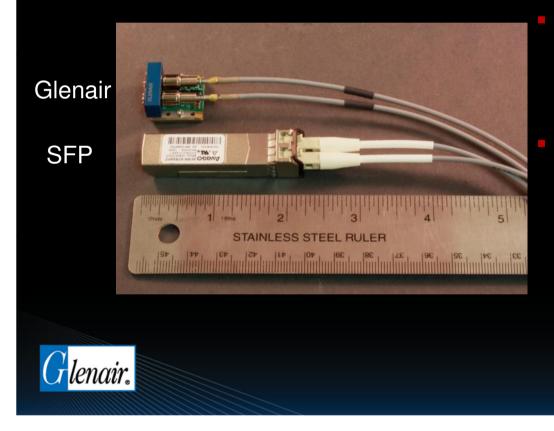
Technische Universität München

Glenair Radiation-Tolerant Transceivers

- Same circuitry and photonics as rad-tolerant Size #8 optoelectronic contacts
- No microprocessors or EEPROMs
- Selected for use in particle physics detector systems

Fiber Optic connectors support high vibration & shock applications

Glenair.


850nm GaAs hermetic VCSEL, PIN-TIAs

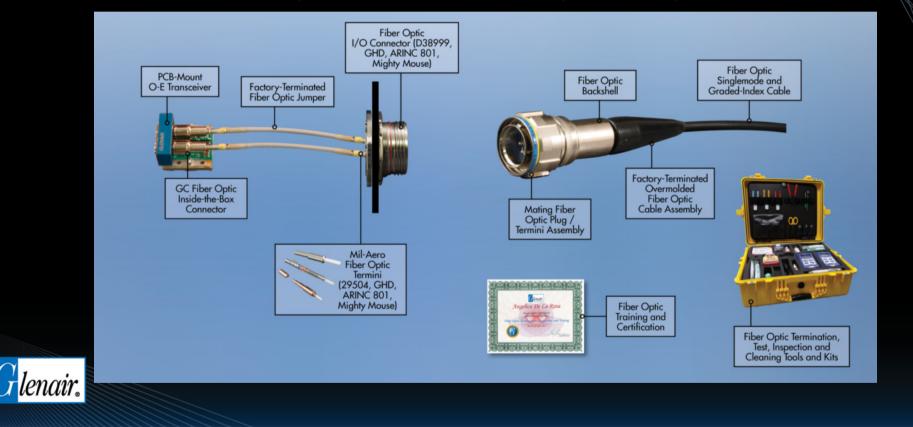
connec retaine mounti to sup Vibrati Applica

30Gbps High Speed electrical connector retained with 4 mounting screws to support high Vibration & Shock Applications

Easily installed and replaceable

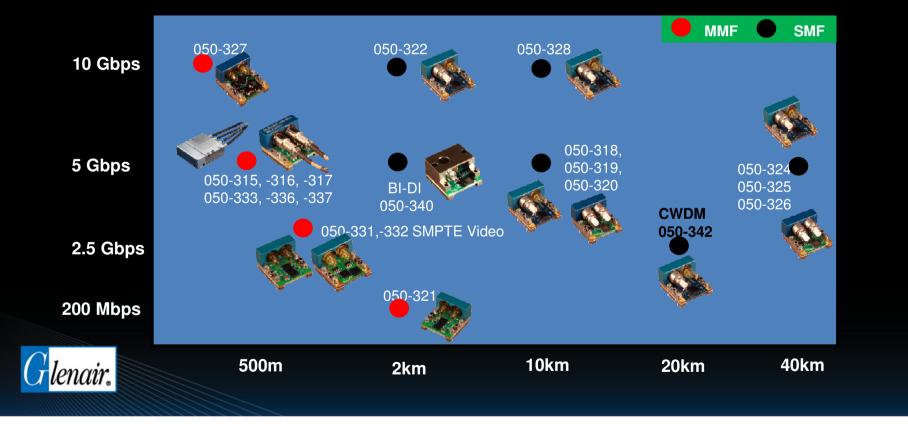
Glenair Transceiver features compared to COTS

Aerospace XCVR

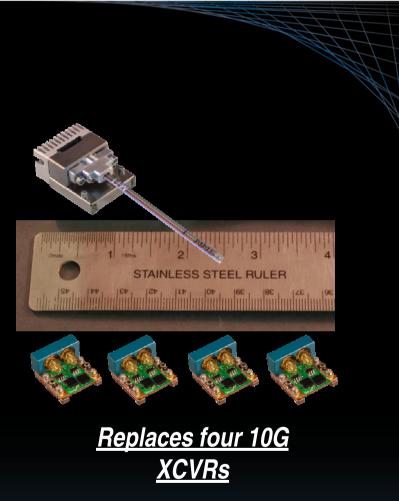

- Secure mounting to PCB preferred
- Rugged optical and electrical connector
- Compatible with SFF I²C standard

COTS SFP, SFP+, QSFP+, etc.

- Pluggable, commercial grade connectors
- Not ruggedized for vibration or temperature – some non-hermetic
- Larger footprints
- Off-shore mfg and firmware loading
- SFF XCVRs require soldering to PCB


Typical Implementation of Aerospace Transceiver

PCB-mounted XCVR to panel connector to aerospace fiber plant


PCB-Mount Transceivers

Wide range of digital and video signal types supported

Parallel Optical Transmitter

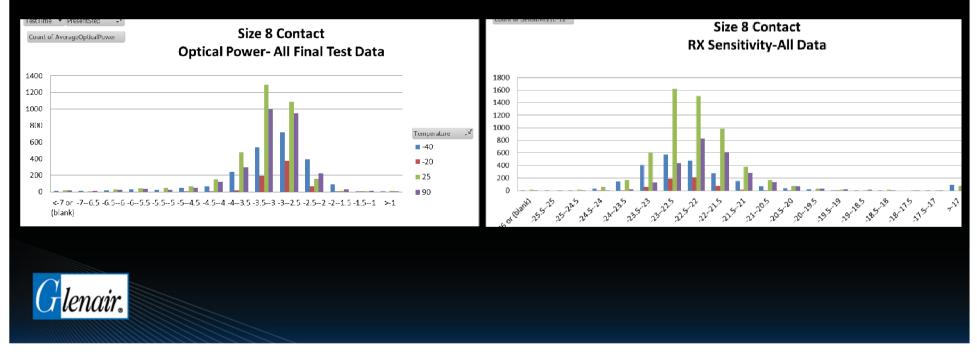
- In final stage development
- 850nm GaAs laser and photodiode arrays and drive electronics in a <u>hermetically-sealed</u> hybrid package
- Electrical and optical MT removable connectors – no soldering required
- High-speed volume robotic assembly for die-attach / pick-place / wirebonding
 - Low cost and high-reliability

Quality System, Design and Production Environment

- AS9102C quality system
- ANSI 2020 ESD-controlled manufacturing and inventory facilities
- IPC-610 certification of all operators
- NADCAP planned 1H'16

Engineering Design Elements

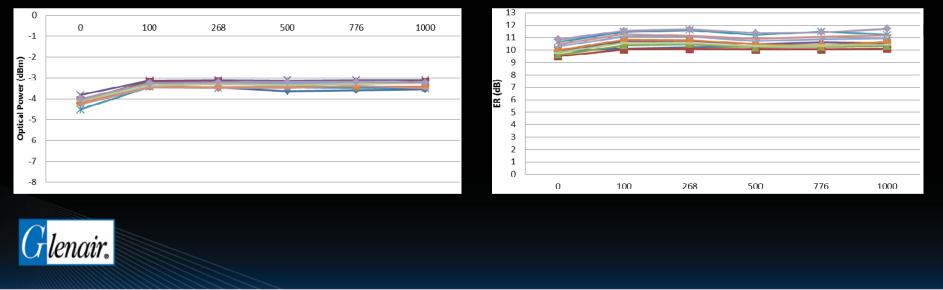
- Design features to enable operation in rugged environment
- Parts selection, qualification and source control
- Documentation and control of manufacturing process
- MTBF calculations based on MIL-HDBK-217F

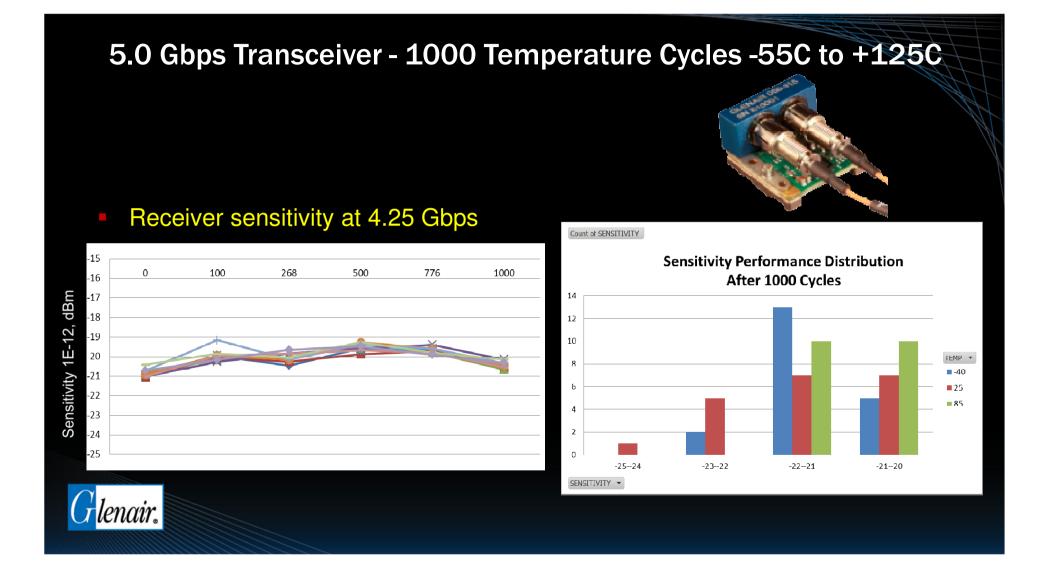

Manufacturing Methodology

- Use of qualified / audited component suppliers
- Control of all design information, supply chain, assembly procedures, test software
- IPC Class 2/3 PCBAs with conformal coating
- Operator training
- 100% Production Testing to weed out early failures
 - 100% thermal cycling, -40 to +85C, 10 cycles
 - 100% operating burn-in at 85C
 - 100% operational test over temperature -40C to +85C
- Computerized database of all production test data
 - Monitor trends in data to spot potential problems
- Over 15,000 opto-electronic transceivers produced to date

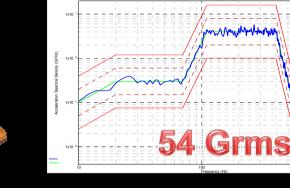
Size #8 Opto-Electronic Contact Production Data

- Production data by serial number on every part
- >10K parts data collected to date
- Continuously monitor data trends to identify potential problems early


Qualification Testing

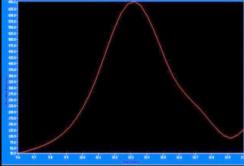

- Qual testing of parts produced under stable and controlled manufacturing processes
 - Qualify the Process and the Product
 - Continuous qualification testing as new products are introduced
- Qualification testing driven by customer requirements
- Thermal cycling, mechanical vibration / shock, high-temp operation, altitude, ESD, EMI/EMC, humidity, radiation

5.0 Gbps Transceiver - 1000 Temperature Cycles -55C to +125C


Optical Output Power and extinction ratio

5.0 & 10.0 Gbps Transceiver Modules - Operational Vibration & Shock

- Random vibration, <u>operational</u>
 - 38grms 2 hours per axis
 - 54Grms 2 hours per axis
- Operational shock
- BIT error free



Glenair.

S	hock	Test	Lev	els
vio		V Avia		7

Shock	Time	Shock	Time	Shock	Time
(G)	(ms)	(G)	(ms)	(G)	(ms)
180	1.4	180	1.4	650	0.9
78	12	78	12	55	40

10 Shock pulses applied to each axis, 5 shocks positive & 5 shocks negative

650G Shock

Summary and Conclusions

- Glenair transceivers are employed in a wide range of military aircraft applications
 - AS9102C manufacturing facility
 - Multiple versions for data / video up to 10 Gbps, SM & MM
- Radiation-tolerant transceivers
 - Simple 5 Gbps hermetic GaAs / SiGe / CMOS design
 - No microprocessors or EEPROMs
 - 165 Krad Gamma and 2.5x10E12/cm^2 neutrons
 - Heavy ion testing still required and planned
- Hermetic 4x10G optical transceiver in development
- Topics for further discussion
 - Hermetic vs. non-hermetic

Glenair.

- MIL-PRF-38534 requirements
- Systems requirements (SpaceFibre, other protocols?)
- Opportunities for heavy ion testing or space flight insertion Collaboration opportunities

For further information

Davinder Basuita

Business Development Manager, Europe, Photonic Products dbasuita@glenair.com

 Ron Logan, Ph.D. Chief Technologist and Sr. Director, Photonic Products <u>rlogan@glenair.com</u>

